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PREFACE

I

For many Air Forts flight dynamic vehici. problems it is absolutely
• essential to utilize effective filt rthg techniques . This includes such

issues as ride control, most effective flight vehicle systems instrueentatj on
utilization , etc . C~ e of th. most important areas for such techniques is
that of observers , and this report presents ohe of the most densely richI collection of results to be published to date on the national scene .
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SECTION I -

iNTRODUCTION AND OUTUNE OF RBSEARCH

I • I INTRODUCTION AND PROBLEM STATEMENT
The general state estimation problem to be considered in this

dissertation is described simply as follows • Given the linear stochastic

thscreie-time dynamical system characterized by the equations

(1.1)

(1.2)

where

is the n-dimensional state vector

~s the rn-dimensional measurement vector

and v1 are, respectively, n-dimensional and rn-dimensional
i ndependent Gaussian white noise sequences hav ing zero means and
covariances Q~ 

and

and ~~~~~~~ the Initial state, is an independent Gaussian vector with mean
and covariance M0. It is desired to find an estimate of the state vector x~ at
time “I” along with Its associated error covarlance • The notation

implies the estimate Is to be based on all the measurements obtained
• up to and Includlng .X~ obtained at time “1.” It is, of course, also desired

that this estimate be optimal in some sense,~ I .e., with respect to some
given perwrmance criterion . There are many performance criteria which

• have been presented in the literature pertaining to estimation theory,
however, from the standpoint of mathematical tractability the quadratic

I
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performance criterion La most appealing and it was this performance

criterion which was used quite successfully by Kalman [14). if it is

desired that the estimate be optimal in the mean-square sense, wh ich

implies that the estimate minimizes the quantity E

then the solution to the estimation problem is the well-known Kalman filter

and the defining equations for the optimal Kalman estimator are

= 
~i+ui + K t+i(!i+l 

- (1.3)

K i+j = Pi+i,~Hi+i ’ (Ht+IP1+i,LHI+I ’ + 1~.j+1)
1 (1.4)

• P1+i,j=A 1P1,jAi
’+Qj (1.5)

= (1~ 
- I(j+il4j+i) ~~~~ 

(1.6)

where i+1/j = Ai~i,i. To initialize the Kalman filter at time “i=O” we take

~ = i  and p = M .-u/ u —u 0/0 0

Although in theory the Kalman filter completely solves the problem

of state estimation in the mean-square sense for linear systems with

Gaussian statistics, its inherent complexity and implementation have

discouraged widespread application. Building the K alman filter essentiaUy

requires the simulation of the entire n-dimensional syste m being observed .

Equally important , the Ricatti equations (1.5) and (1.6) which must be

• solved at each time instant “1” to obtain the optimal Kalman gain matrix , K 1,

have been the source of much trouble in the real-time mechanization of

• K alman filters , especially in the case of large dimensional systems. These

numerical and computational problems associated with the real-time

implementation of Kalman filters have led many researchers to seek out

2 
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simpler , less optimal solutions to the minimum mean-square state

estimatIon problem.

k~arly work in this a..~ a was done by Luenberger [20-22] who showed
that when the system (1.1) and ( l .2) Is  time-invariant and no noise distur-

bances are present , the state vector ~ may be reconstructed exactly with a

stable linear system of order “n-rn ” which he called a minimal-order
observer . Luenbergerl s basic idea In the development of his minimal-order
observer is the notion that since there are “m ” independent measurements

already available it should be possIble to reconstruct the entire n-di mensional
state vector of the syste m by generating only “n-rn ” additional quantities and

• combining them appropriately with the “in” already existing outputs . Of

• course, Luenberger ’s basic assumption that the system inputs are free of
noise is not always satisfied in practice and this comprises a fundamental

limitation to his original work.

Next , AokI and Huddle [3] extended Luenberger’s work to include the

effects of noise disturbances W
i and vi. However, th..ir work was restricted

• to time-invariant systems and as a result their technique is not directly

applicabl e to the more general time-varying system modeled in (1.1) and
(1 .2). The technique presented in Aoki and Huddle [3] was essentially to

construct a minimal-order observer which minimized the steady-state mean-

square estimation error . However , their optimization technique is compu-

• tationaliy formida ble, even for the simplest of systems, and as a result does
not appear to have been used to any large degree in the design of minimal-
order observers for practical engineering systems .

• Attempt s to construct optimal observer designs based on a purely
deterministic point of view also appear to have been fruitless. Newmann [23 ]

3
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has. investigated the standard up tiii ial  u imt r o i  problem with  a quadratic cu~~ i

luncttun lot the case of linear t ime - invariant  systems using an observer in

the feedback path when some of the state variables are not measurable . By

counterexample , he clearly demonstrat I that if nothing is known about the

initial conditions of the state vector then there is no way of designing the

‘.bserver so tha t the Cost of control will be minimized . In fact , if nothing

i~. known about the initial conditions then high cost may result from the use of

an observer in the feedback path.
• Dcllon [10 ] also studied the deterministic feedback optimal control

• problem with the standard quadratic cost function from the standpoint of using

a minimal-orde r observer in the feedback to reconstruct the state vector x~.

• Dellon considered the mote general time-varying discrete syste m in the

absence of noise disturbances and has indicated similar findings . Restricting

• his observer design to that class of observers having constant and equal

elgenvalucs he concluded that the relative degradation in cost from the

optimal (i .e., when all the states are available for feedback) cannot be made

arbitraril y small by proper choice of observer elgenvalues but the relative

degradation depends upon the original optimization problem.

More recently, Ash [4 , 5] developed a sub-optimal minimal-order

observer estimator design applicable to both discrete and continuous time-

varying stochastic systems . His main goal was to develop a stable minimal-

order observer which provided “acceptable” mean-square estimation errors .

Ash himself stated that his work comprises an engineering solution rather

than a mathematical solution to the problem. The design procedure of Ash

is a “trial and error ” technique which, If judic iously applied, may result in a

relatively good sub-optimal estimator in comparison to the corresponding

4
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optimal Kalman filter . However , in the util ization of Ash’s “trial and error ”
technique it is not at all clear how to achieve acceptable performance without
trying many designs and selecting the best design out of those which were

tried out.

To review the preceeding paragraphs, we have introduced the
fundamental problem of minimum mean-square estimation for linear discrete

stochastic systems and have indicated Kalman’s optimal solution under the

assumption of Gaussian noise processes . After describing Kalman’s filter
and its inherent problems of computation and implementation in real-time

• systems, we next considered the idea of using Luenberger’s minimal-order
observer as an alternate to the K alman filter . The evolution of Luenberger’s
basic observer theory is then presented through a discussion of the attempts

• of various researchers to design observers which are optimal in some sense,
both from a deterministic control theory point of view as well as from a more

• general stochastic estimation theory point of view . Through this evolutionary
discussion we have attempted to provide the reader with a smooth transition
from Luenherger’s original concept of a minimal-order observer to the

ultimate topic of this dissertation. It should be clear from the historical

• evolution that the solution for an optimal minimal-order observer has
importance not only f rom a theoretical standpoint but also from the standpoint
of designing optimal and suboptimal engineering systems . For these reasons ,
we have considered , in this dissertation , the problem of constructing an
optimal minimal-order observer for discrete-time stochastic Systems and, in
the spirit of Kalman , have chosen the mean-Square estimation error as our
performance criterion .

3
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Chapter 2 is a prusuntutitin ,11 some of the more Important basic

results of observer theory as related to deterministic discrete time-varying

systems . Chapter 2 has been inc Luded mainly (or completeness and is

intended to introduce the reader Lu the basics of observer theory . Those

familiar with the material may skip Chapter 2 without loss of continuity.

New theoretical results are given in Chapter 3, in which is presented

the fundamenta l solution for the optimal minimal order observer in the

case where the notsus W I and arc Gaussian white noise sequences . Also, in

Chapter .3 the complete generality of the optimal minimal-orde r observer

design Is discussed and the equivaLence of this observer and the Kalman

• (liter is demonstrated (or the special vase in which the measurement noise ,

is identically zero . Chapter 4 treats important new extensions of the

basic m inimal-order observer design to the class of systems in which the

• noise disturbances w1, v~ are time-wise correla ted processes of the Gauss-

• Markov type .

A comprehensive and comparative study o ’ several observer designs,
• inciuding th~ Kalman (liter , the optima l minimal-order observer , and

several equa l cigenvalue observer designs, is presented in the wiamples ci’

Chapter 5. The computer simulations of Chapter 5 treat the practical

problem of designing a radar tracking system of reduced complexity based on

the optimal minimal-order observer solutions developed in the previous

chapters 3 and 4 of the dissertation.

The fi nal conclusions and recommendations for furthe r research are

presented in Chapter 6.

-
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FUNDAJIIENTAL RESULTS OF DEThRJ4ZNISTIC

OBSERVE R ThEORY

2. 1 MINIMAL-OiWER OBSBRVERS FOR DETERMiNISTIC SYSTEMS

rhe purpose of thi s chapter is to review some of the more important

fundamental results of deterministic observer theory which have been

obtained by various researchers to date. We begin by defining the concept of

a minimal-order observer for linear discrete-time dynamical systems.

Huddle ~l3) has shown that a completely observable n-dimensional system

~i+l = A~~1 + B~~i (2.1)

t with m independent outputs

H1x1 (2.2)

can he “observed” with an (n-mi -dimensional system

= Fizi + G1u 1 + Di~i (2,3)

such tha t the output of the observer Is of the form

~ T1x1 +~~~ (2 .4)

where

(2 5) 

• •~~ 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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If the observer initial condition is chosen such that ~~ T0~, then

from (2.4), (2.5) it is seen that a T1x.1 for aLL “i” ~ 0 and in this case it

Is possible to reconstruct x1 exactly from and z~. The observer is chosen

so that the rows of [_~.L] are linearly Independent and the estimate of is

taken as

* 
IT 1 11 I!~1

• ~~i~~~~~
[1c

J 

[x iJ 
(2.b)

It ~~~, 
T0~ , then (2.6) will give the true value of the state x1.

Huddle also proved that for the system (2.3) to be an observer of the

state x1 in (2 .1) it is both necessary and sufficient that the following matrix

relations be satis fled

TI+lAi F1T1 + D1H1 (2.7)

= Tj+1B1 (2.8)

r T~ ~-1
Further, since it Is necessary that the matrix inverse 

~~~~~~

— exist ,
I U

Huddle postulated the inverse to be partitioned in the for m EP
1 

1v 1] and

obtained the solution of (2,7) to be

F1 Ti+iAiPi (2.9~

Ti+IAiVI (2. 10)

where P1T1 +V 1H1 - I.

By using a clever coordinate transformation Dellon CLO ] next

extended the work of Huddle by proving that the elgenvalues of the observer

matrix F 1 are completely arbitrary provided the system (2. J) ls completely

uniformly observable , To do this Dellon assumed the measurement matrix

8
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to be of the form

• u1 [11 (1)1 11
(2)
1 (2.11)

where H1~
1
~ is an m x m full rank matrix at each “I” . Then using the

linear transformation

Im i I
— _ _ _ _ _ _ _ _ _ _

0 ‘n-rn

Dellon obtained an equivalent state space where the measurement matrix was
In the form

H . =[i
.i

1
(’)

~~ 0] 
- 

(2.13)

Without loss of generality the system (2.1), (2 .2) was assumed to be already
In this desired for m and the observer matrix T1 was taken to be

T1 = E~1Ii J (2.14)

where K 1 is a free (n-rn) x m gain matrix , From (2.9) It Is shown that the
observer matrix F1 Is of the form

F1 = A22
1 + K I+1A12

1 
(2.15)

where A22
1 and A12

i are respectively (n-rn) x (n-rn) and m x (n-rn)
partitions of the matrix A1 in (2.1). InvokIng the dual of Wonham’s result
for controllability, C33J Dellon argued that If (A22

1, A125 is an observable
pair then there exists a matrix K~~1 such that the elgenvalues of

- 
_,
~~~~~

_
~~• ±••
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A22 + K I+I AIZ ’ may be arbitrarily assigned. But (A22
1, A12

1) is an

observable pair at every “I” provided the system La completely uni formly

observable. Thus, the aigenvalues of F1 arc completely arbitrary at each

instant “I” .

Returning to the idea of state reconstruction, we note that since the

entire state is not directly accessible it is unlikely that the condition

z T0~ , can be achieved. This Implies that the observer error (2.5) will

In general be non zero and the estimate 
~ 

in (2.6) wiU be in error . However ,

since the observer elgenvalues were shown to be completely arbitrary, it is

therefore possible to reduce the observer error to zero as rapidly as

desired. Thus, we have forced the estimate to approach the true state

as rapidly as desired.

2.2 OBSERVERS OF ORDER “n”

Williams [31) has considered non- minimal order observers and has

approached the observer design problem with the Idea of achieving suboptimal

Kalman filtering. Consider the n-dimensional observer given as

+ + Dj+iXi+j (2. 16)

• Here the observer output Is defined by the relation

(2. 17)

where T1 is an n x n nonslngular 
matrix. In this case the state estimate

Is taken to be

— T1~~z1 (2. 18)

10
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Williams has shown that the system (2.16) 18 an observer of the state In
(2.1) 11 and only 11 the following matrix relations are satisfied

Tj+iAi - F1T1 + Dt+IHI+lAj (2.19)

Tj +jBt - 61+ DI+IHI+IBI (2.30)

The corresponding estimation error Is given by the expression

T1
1 (~ F~

) 
(~ 

- T0~ ) (2.21)

One obtains an interesting solution to (2,19) by taking

Dt+i = Tj+lK i+l (2.22)

where K i+j is an arbitrary ii x m gain matrix, With this choice for Dj+i the
observer equations become

F1T1 a Ti+i(I - K i+1H1+i) A1 (2.23)

G1 = Ti+i(I - K I+IHI+I) B1 (2.24)

An Interesting observation concernIng (2.23), (2.24) Is that the special case
where T1 I and K 1 is taken to be the K alman filter gain matrix, the observer
obtained Is identical to the K alman filter, That Is, the observer equations
become

F1 — (I - K i+1H1+i) A1 (2.25)

G1 a (I- K j+1H1+i) B~ (2.26)

Dj+l a K 1~1 (2.27)

11 
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Substituting (2.25), (2.26) and (2.27) into the observer system equatIon (2. 16)

gives the result

a A~~ + + K i+j (x~+1 - H i+i (A~~ +B~~)) (2.28)

which clearly shows the observer to be Identical to the Kalman filter, If the

deslgncr picks the gain matri x K 
~~ 

according to some other criterion , the

observer then may be viewed as a suboptimal K alman filter. (For example,

the gain matrix might be chosen to give some arbitrary set of elgenvalues.)

Therefore, a Kalman filter is an n-dimensional observer for which the

weighting matrix Dj+i has been chosen to minimize the mean square

estimation error. It Is also interesti ng to note that in the more general case

where the transformation T1 Is a k x n rectangular matrix (k < n), the

solution of the fundamental observer equation (2.23) is an aggregation in

the sense of Aokl . [ 2 J We shall not pursue this idea any further since our

Interest in this observer formulation will be primarily the design of n-
- • dimensional observers based on the selection of etgenvalues .

By a j&dlcious choice for the observer transformation T1, Williams

has shown that It Is possible to obtain completely arbitrary eigenvalues at

each Instant “i” for an observer of the form (2.16). He considered a

completely uniformly observable pair (A1,hj) and took as the transformation

T1 the following matrix product - 

- - -- -- . •• • • • • •• _ _  
_ _ _ _ _ _
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T1 

.A 1i~ I 
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~~~
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~

. 
i!i+1 A1+j (2.29)

~~~~~~ -A 1 ~~~~~~~ - )
~~~~~ I .

~t+Z Ti A~~

• Observablilty Matrix

where for the purpose of simplicity we have considered a single output system .

The results are easily extended to the multiple output case. For the

particula r transformat ion T1 chosen the observer system matrix F1 La in

column companion form and has arbitrary eigenvalues.

i o ....... o x (1 0 0 ... 0)

0 l . .. . .. .0  x

F1 z — : (2.30)

A
1 

0 0 .. . .. .  0 x

TI+I ALT~
’ T,~ 1K 

~~ 
h~~ A1 T~

1

Since the ga in matr ix K 1~1 Is completely arb itrary and the matrix Ti+i is

nonsingular from (2.30) it is apparent that any desired set of observer

• eigenvalues may be obta ined.

2.3 APPLICATION TO OPTIMAL CONTROL

One of the fundamental applications of observer theory Is In the

design ot feedback controllers for the linear regulator problem where some 

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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of the state s are inaccessible and must therefore be estimated using an

observer • For example, assume It is required to obtain the control u1 In

(2.1) which minimizes the cost f unction

N
J = ~~ ~~‘Q~~ +~~

‘R1~ (2.31)
tao

• where Q1 and are respectively n x n and p x p symmetric posLtive definite

matrices for all “1” in the interval E0,NJ. The feedback law which minimizes

J is known to be a linear state feedback of the form C30 1

= L~x1 (2.32)

where

e -(R1 + B1 ‘Fj+1B1) ’ B1 ‘F1+1A1 (2.33)

anu Is the n x ii symmetric positive definite solution to the discrete

lUcatti equation

F = A 1
1 ’

1~1A 1 
- A1’rl+lBL (ft 1 +B~’r1+1B1) ’ B1

1r~+1A1 +Q1

with (2.34k

Applying the optimal feedback control results In the minimal cost

(2.35)

By assumption the entire state vector is not directly available for measure-

ment and therefore the optimal feedback control can not be implemented.

The alternative considered here Is to use a minimal-order observer to

14
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construct an estimate of the state and apply the euboptimal leudbsck

control

(2.36)

It is of interest to determine the effect of the observer upon the control law .
Subst itut ing (2.6) into (2.36) and using the fact that P1T1 +V 1H1 - I~ it is

easily verified that the subuptima l control law is given by the expression

i-I
~ 
;~1p1 ( ~~ F~)(!O T~~()

) (2.37)
.haO

It is clea r from (2.37) tha t is the sum of the optimal control plus an
additive term due to the incorrect observer initial condition • The obvious
conclusion is that introducing an observer in the loop generally results in an
increase in cost from that obtained when the optimal control law is
i mplemented . Further, this Increase in cost has been shown by Delion (10)

• to he of the form

J a J ’ + ’ (2.38)

where the positive definite matrix satisfies the recursive equation

a F1 i1~~F1 +P1 ’41
’(R 1 +B1 ’A1+1B1)A 1P1

with (2.39)

N ”°

To determine the effect of an observer on the stability propertIes of a closed
loop cont rol system in which it Is used we assume It is desired to control
thu linear system (2 1) by the linear feedback law

L.~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I
(2.40)

Presumably K 1 will be chosen by the designer such that the closed loop system,
defined by

(2.41)

achieves some desirable response properties, which will always include

stabIlity . However , the actual state vector is not directly available and a
discrete time-varying minimal-order observer Is used to generate an
estimate of the state ~~~. The estimate Is seen from (2.6) to be of the

for m

= P~~1 +V 1y4 (2.42)

where is the output of the minimal-order observer and is the plant
output vector . Applying the control law (2.40) with the state estimate
(2.42) gives the closed-loop state equation

= (A1 +B1K 1V1H1)*1 + B1K 1P~ 1 (2.43)

Also applying the same input to the observer gives

+ B1K 1)P~~ + TI+I (AI + B1K 1)V 1H~~ (2.44)

Combining (2.43) and (2.44) results in the following state equation

[.~I+l f A 1 +B1K 1V 1H 1 I B1K 1P1 1 ~— I (2.45)
[.~i+i L THl (AI + 81K 1)V1H1 T~~ (A1 + B1K 1)P1 J z1

16
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The stability properties of the overall clos~d-toup system become ~apnurent

when the system i.s viewed in a different state space. With this thought In
mind, we perfor m the coordinate transformation L 5 1  

-
•

I n 0
— = (2 .4(~-T1 ‘n-rn !j

This rtonsingular transformation results In the equivalent state space

representation

~l+l 1 A1+81K 1 -B1K 1P1 ~t— — — — I  = — — — — 4  (2.47)
0 F~

In the special case of time-invariant systems it is clear that the elgenvalucs

of the overall system are the elgenvalues of A + BK plus the eigenvalues of the

observer system, F. By assumption the closed-loop system A + BK has

stable eigenvalues and since the observer is designed to have stable etgen-

values then the overall system is obviously stable. Hence in the time

Invariant situation it is clear that the observer does not affect the optimal

closed-loop poles at all, It merely adds some poles of its own [20].

Intuitively one would expect this same result to carry over to the more

general time-varying case . However, although it is true that at any fixed

instant “1’ the eigenvalues of the system matrix (2.47) are the eigenvalues of

A1 + B1K 1 plus the eigenvalues of F1, this does not Imply stability of the overall

system (2.47) in any rigorous fashion. To prove stability In the more

general case a more carefu l consideration of the state equations must be

taken .

• 17
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it is, of course, assumed that the designer has constructed a stable

time-varying observer. Hence the observer-error is bounded and to prove

boundedness of the closed-loop state vector (2.47) it is sufficient to prove

boundedness of the subvector x1. From (2.47) we have

= (A1 +B 1K 1) x i - B1K 1P~~1 (2 .48)

which has the solution

= 
~~~~~~~~~~~~~~~ ~~ ~~~~~ 

B~K~P~~ (2. 49)

where

/ 1-1 \
= ( fl F~) (~~-T~~~) (2.50)

J=o /

and the transition- matrix is defined as

-
~~~~~~ 1-1

~ ~~ 
fl (A~~+B~K~~ (2.51)

Taking the norm of (2.49)

— 
~~~~~, ~~~~

- 

~~~ 
+ E 

~~~~~, J+l ~:B.K .p. .LF~ ~~ ‘ (2.52)

Since by assumption ~ and F
1 0  

are uniformly asymptotically stable we

have :101

~~~~~~ 
~ c1e’j for some c1 > O a n d 0 < 8 1 < i  (2. 53)

and

F10  
s c24 (or some c2 > O a n d o < 8 2 < I  (2 .54)

18 
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Let 
~
BiK iPi~ ~ c3 <~~~ and (2.57) becomes

~~ ~ c1~~ ~~ +c 1c2c3 ~~ 
~i-j -l fr J 

~ (2.55)

Evaluating the sum in (2.55) gives

~ ~~~~ ~~~~~ + clc2c3 (~ ~
) 1~ ’ (2.56)

Thus is bounded for all “I,’ and since j im - 0  for all finite then the

closedioop system (2.45) is uniformly asymptotically stable.

2. 4 ADDITIONAL COMMENTh

It should be emphasized at this time that the design procedures of

Huddle, Dellon and Williams involve little more than the statement that the

designer is free to choose the observer elgenvalues in any desired fashion.

The fundamentally important problem of where to place the observer elgen-

values has not yet been solved and remains a perplexing problem to the

• designer. It Is , of course, usefu l to know that one may design (n-rn) -

dimensional observers or n-dimensional observers with arbitrary eigenvalues

at each instant “I” ; however, without the added information of where to

optimally place the elgenvalues , the design of the observer remains at best an

ad hoc procedure.

in contrast to the idea of artifically picking the observer etgenvalues

to provide acceptable system performance, we shall base our observer

design on the more fundamental objective of minimizing the effects of systen’

noise disturbances upon the observer derived estimate i~. In formulating the

observer design proble m in a more general stochastic setting, the resultant

19
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observer errors will be dependent upon the plant noise disturbances and from

- a consideration of the noise Induced errors an optimal observer design will be

- 
obtained . We shall obtain a solution for the observer matrices F1, T1 and U1

which not only satisfies the funda menta L observer equation Ti+1A1 =

F1T1 + DiHi, but results in an observer system which is also optimal in the

mean-square sense .

20
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SECTION III

OBSERVERS FOR DISCRETE TIME-VARYING SYSTEMS WITh

WHITE NOISE INPUTS

3.1 INTIWD(JC11ON

In this chapter we shall focus our attention upon linear, discrete-time
stochastic systems for which the dynamic behavior can be characterized by
the following set of equations .

_
~+ l i ~i +~~ i +!t (3 .1)

1j H~~i +V i (3.2)

where Is the n-dimensional state of the syste m at time “I” , u~ is the p-

dimensional known control vector which acts upon the system at time “i”, and

Is the rn-dimensional measure ment vector . The initial state~~ is a

Gaussian random vector with known mean and covarlance

• 
•

£ (~~j~)(~ j~,) ’) =

Further , the noise sequences w1 and are assumed to be Gaussian random 4

vectors with known means and covariances

£{w 11 a Q  for all “I”

• S iv 1) = 0 for all “1”

J 
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( stv ~v~
’) =

where Is the K ronecker delta. In general , the covartance R1 will be con-

sidered to be positive definite whereas the covartance Q1 will be posit ive

semi-definite . The various random vectors are also assumed to be mutual l y

• uncorrelated so we have the relations

E t~~w1 ‘J = 0 for all “i ”

E t x  v = 0 for all ,‘t,’

E t w 1v~ ’) = 0  for all ”t , j”

Thus it is assumed in this chapter tha t the noise sequences w 1 and arc time-

wise uncorrelated sequences which shall be referred to as Gaussian white

sequences. In the interest of simplicity, at this point we have assumed a

model for the white noise sequences in which the cross-covartance matr ix ol

and v 1 Is zero. Later in this chapter we shall extend our results to include

the speciaL case whereby w1 and v1 are Gaussian white sequences which are

crosscorrelated at time “i. ,’ Also, in the next chapter we shall consider the

more general situation in which the noise sequences 
~~ 

and v 1 arc t im e -wise

correlated sequences of the Gauss - Markov type .

3.2 DEFINITiON OF ThE DISCRETE OBSEI(VliK FOt( STOCUAS1’IC
SYSTEMS

Loosely speaking, for stochastic systems an observer Is defined to be

a system whose output vector , z~11, is an estimate of the quantity Ti+j.~ +i
with an esti mation error , £11.1 , depending only on the previou s estimation

error, 
~~~~

, and the plant and measurement noises w1, v 1 . To be more precise

22
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the discrete time-varying system

a F~ 1 + + D~~ (3.6)

is called an observer of the state of the system

~~~~~~~~~~ 

a + B1u1 + (3.7)

a H~~ + (3.8)

if at each instant “I” the following relation holds

= T~~~1 
+ l

i (3.9)

where the observer esti mation error , C~, evolves according to the recursive

equation

1+1 = F
1

C
1 

+ D1v 1 - Ti+1wi (3.10)

In order tha t the above relations hold It is both necessary and sufficient

tha t the following matrix equations be satisfied at each instant “I”

Tt+1A1 F1T1 +D1H1 (3.11)

T1~1B1 (3.12)

Necessity is proved as follows . AssumIng (3.6) and (3.9) to hold, one obtains

the result

- F
1
T

1 
- D1H1) x 1 + C1’i+iBi 

-

(3.13)- - D~ 1 +T1+1w1 =Q

Since (3.13) must be satisfied for all state vectors and for all control

vectors 
~~~~~

, take a Q and * Q. This implies the following result.

L 23
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a + D~~ 1 
- T1+j

W
i 

(3.14)

Hence, (3.13) reduces to the following

(Tj+i#ii - F1T1 
- D1Hp~ ,1 +(Tt+iBt 

- G1)~&1 aQ 
(3.15)

But (3.15) must hold for all state vectors x1 and for all control vectors ~~~~~ , so

take z Q and x1 arbitrary. This Implies the following result .

Ti+1A1 * FiT1 +D1H1 (3.16)

Also in (3.15) we may take a Q and u1 arbitrary. This Implies the following

result.

Ci 
= T1~1B1 (3.17)

Conversely, assume equations (3.11), (3.12) to be satisfied at each Instant

“1” . Then from (3.6), (3.7) and (3.8) we obtain the following.

- T1÷1xi÷i F~7~ +G~~ + D1(H~~ +~~)
(3.18)

— 

- Ti+i(A~~ + B~~1 +

Substituting (3.12) into (3.18) gives the following result.

- T~~1x~+1 a F~~ +(D1H1 
- T1+tAt)~~ + D~~ - Ti+i~~ (3.19)

Next, since F1T1 -(D1H1 - TL+1AI) from (3.11), we obtain the result

T1÷1x1+i 
- T~ 1) + 

- T1+1w1 (3.20)

Clearl y, (3.20) Implies the following relations

(3.21)

24
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a F~f~ +~ D~~1 
- T1+1w1 (3.22)

From (3.22) It Is seen that the observer error at time “1+1” depends
only upon the previous observer error at time “I” and also on the noise
disturb ances

• 3.3 AN OPTIMAL MI NIMAL-ORDE R OBSERVER DESIGN
• f The discrete time-varying system described by the equa tions

* F~~1 +G~~ +D~~ (3.23)

(3.24)

where z1, an (n-m)-dimensiona l vector , is called a minimal -orde r observer
of the state x1 of the system (3.1), (3.2) If at each Ins tant “ i” the following
matrix relatio ns are satisfied

Ti+iAi a F iTi +DiH i (3.25)

a T1~1B1 (3.26)

IT 1’
~~ L

j  

exists (3.27)

EquatIon (3.25) is the funda mental observer equation relating the observer

system matrices F1 and D1 to the observer iran stor maUon matrix T1. In
the design of a minimal-order observer the additional constraint (3.27) must
also be satisfied at each instant “I” . Using this fact, a general solution to
the observer equatIon (3 .25) may be obtained . Rewriting (3.25) in

partitioned form

I i  
25

•~~~~~~~~~~~~~ •~~~~~~~~~~ ~~ -~~~ - -



~~~~-r . r —~~~~-.--~-~~~ ,—~----,—~ ~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~ ~~~~ 
- -

T1~ 1A1
a IF’i IDtI [~

.-.1 (3.28)

and postulating the exIstence of the matrix inverse to be of the for m

[~~
_i’a i ~ i iv i i  (3.29)

where P 1 is an n x (n-rn) matrix and V 1 Is an n x m matrix , one obtains upon

multipLy ing (3.28) from the right by the above inverse, the solution

F 1 
T

i+1
A

L
P

L (3.30)

D
i 

a Ti+IAIV i (3.31)

From (3.30) , (3.31) it is seen that the design of the minimal-order observer

h s  been reduced to the selection of the single matrix T~. This is seen from

(3e29). Specification of the matrix T1, together with the known measurement

mat r ix H 1 uniquely defines the matrices P1 and V 1 and from equations (3.30)

and (3.31) is seen to uniquely define the observer system matrices F 1 and D1.
The observer error, fi’ was shown previously to satisfy the following

difference equation.

!i+l 
a + D~~ 1 

- Ti+j wt (33~)

Using the solution (3.30), (3.31) together with the error difference equation

(3.32) one obtaIns the observer error covaria nc e given as (3.33) .

T
i+i 

(A1
P

1~~~1~~ ’P
1 
‘A

1
’ + AL

V
i
R

i
V

I 
‘A

1
’ + Q1) T1~~1

’ (3.33)

We sh*ll define the matrix to be the folLowing.

26
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eA 1P 1~~~~~P1~A1
. + AI ViR 1V 1 ’Ai ’ +Q1 (3.34)

It will he useful at this poInt to partItion (3.33) as follows .

t
~i2
— Tj+j ’ (3.35)

~2l ~~2

where is m x m, çJ~2 is (n-rn) x (n-m) and Q~2 . Q~~’ is m x (n-m). The
submatrices ‘41’ c~2 and ‘42 are obta ined as partitions of the matrix
defined by (3.34).

Equation (3.35) plays a fundamental role in the optimal observer
design to be developed . We shall next obtain the covarlance matrix of the
overall estimation error • The estimate of the state vector is
obtained as follows , (The notation 

~~~ 
shall be used to distinguish between

the optimal Kalman filter estimate and the observ er derIved estimate .)
Comb ining the observer output 

~~~ 
with the measurement y1~1 gives the

following.

I!i+l 1 f T1~1

[ 1 *  1 ~~~~~ 

~1.— (3.36)
Xi+l J 

H i+i

Using the matrix Inverse postulated as equation (3.29), we obtain the estimate

3i+l ’~ .~i+l + I P i+I I v ~~4 (3.37)
y_I+1

The resu lting estimation error Is found to be

27



P4+11
- = k+1 I — (3.38)

FInally, the error covar Lance 
~~~~~~~~ 

may be obtained as follows.

‘ 0
_ _ _ _ _  

— 1+1-4+1
= (P j+1 t V1~1J 1 v~~1 J

0

(3.39)

where from (3.32) It may be shown that .5~+jy~÷1’ = 0.

To proceed furthe r, some necessary assumptions must be made about

the form of system (3.1), (3.2) . It is, of course, assumed that the measure-

ment matrix be of maximal rank at each instant “i” In the interval of interest.

In the absence of measurement noise, if H1 did not exhibit this characteristic,

then some of the measurements would be linearly dependent and, hence,

redundant, so that the measurement vector could be reduced to a linearly

independent set without any loss of information . In cases where the system

outputs are corrupted by measurement noise, there may however be Important

reasons to consider all the system outputs, Including any redundant ones.

We shall not, however , treat this case but shall consider only matrices H1 of

full rank .

More specifically, it Is assumed that the first “rn” columns of H1 (with

a possible renumbering of the states) are linearly Independent for aU “I” In

the interval of interest. This is a reasonable assumption in view of the fact

that usually the system outputs are affected by the same state variables even

though the gains Involved may vary with time. In many physical systems H1

28
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will actua lly be a constant matrix even though the matr ices Ai, Bi are time-
varying. Therefore H1 may be partitioned as follows

H1 .[H~~tH~4] 
(3.40)

where H~
’
~ is nonsingular at each ins tant “ I” in the Interval of interest. Next

we shall assume that H~
2
~ is identically zero since the Linear transformation

~ 
—H ~~ H~

2
~

(3.41)

will transform the orIginal system to the desired form shown in equation
(3.42). Therefore , without loss of generality , it will be assumed that the
measurern~~ts are of the form

a Urn ~ ~~t ~~~ (3.42)

To compLete the basic observ er des ign , it remains only to specify the
IT 1-1• observer matrix T1. Since the matrix ry1— I must exist at each instantLrl i Jthe most logical choice for the matrix T1 is given below as (3.43).

T1 a tx 1 ‘‘n-rn ~ (3.43)

is an arbitrary (n-rn) x m gain matrix which will be chosen to minimize
the overall estimation error. With this choice for the matrix T1, the
matrices P1 and V1 are found to be the following

lo 1p1 V 1 c 1— I  (3 44)Ltn-m J 1~
Ki j
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Substituting (3 .44) into (3.3~ gives the following result .

R R K ’
1+1 1+1 1+1

= (3.45)

-K ~~~~~ •Ej+124+i + K i÷1Rt+1K1+i
’

Also, substituting (3.43) into (3.35) gives the result

.5i+l~4+l 
= K i+1~~i

Ki+i
’ + K~+1’42 + ‘41K 1+1’ + (3.46)

The optimal gain mat rix K j +j* may now be determined. From (3.45) and

(3.46) one obtains

trace 
~i+i!i+i = trace

(3.47)

+ trace 
~~~~~ 

+ 
~ 1÷1~ 

Kj+i’ + K1+1’42 + ‘4LKL+I
’ + 022 1

“Completing the square” in (3.47) gives the result

trace ej÷jei÷i’ = trace Rj+j -

+ trace ([K 1+1+’41((41 +a1+1) ’]Cc?
~1 +a 1+1) CK 1+1+

(3 .48)

+ 021(011 + R i÷j)~~
)’ + ‘42-’41 41÷ Ri+j) ’ 42 i

The desired optimal gain matrix, K i+j ’, is obtained by minimizing the

trace ‘. By assumption the measurement noise covariance Ri+j is

positive defi nite. Clearly, the submatrix 4~ 
is at least positive semi-

definite so that the matrices (‘4i +R j+i) and (‘4j +Ri+j)~~ 
are positive

definite. Therefore the matrices
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• rx 1.,.1 +C~ 1(0il +R j+i) ~~~~ +R i+i )(K i+l+’41((4 l+a 1+1)
1) ’

(3.49)

and

~~i(’4z +R1+1)’(42 (3.50)

• must have positive diagonal elements . The minimum of the diagonal
elements of ei+Iei+i’ must therefore be attained when

+ ‘4i (‘4i + ‘~+i~ 
= 0 (3.51)

Clearly the optimal gain matrix K
~~1 Is given by the expression

* = -‘4~(’4 .~ 
+ R~~1) 

~~~ (3.52)

The minimal estimation error obtained when KH.f is taken to be the observer
gain matrI x is found by substituting equation (2.39) into equatIon (2.35). Thus
it is found that

mm trace !i+j!i+l’ 
a trace Ri+i + trace 

-

(3.53)

Design of the optimal minimal-order observer is essentially complete at this

point; it remains only to specify the resulting observer dynamical structure.

Previously it was shown that the observer matrices were of the form
F1 = TI+IAIPL and = TI+1AIVi. Straightforward substitution of the observe r
transformation matrix Ti÷i fequatton (3.43)) and the corresponding matrices

P1 and V~ Lequatlon (3.44)] results in the following

_ _  
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F1 = A~2 + K 1+1A~2 (3 54)

D
1 

= - A’22K 1 + K i+i~A~i - A~2X 1) (3.55)

Also, the matrix C1 is defined explicitly in terms of the observer transfor-

mation Ti+l and the plant matrix Bi according to the relation

C1 = T1~1B1 - (3.56)

A block diagram of the basic observer structur e is shown ~n Figure 3.1 along
with the appropriate defining equations and the algorithm for obtaining the

optimal observer gain matrix.

3.4 iNITIALIZATION OF ThE DISCRETE OBSERVER

In the case of the recursive K alman filter equations, the a priori

statistics i and M0 of the initial state are assumed to be known. This

a priori information is needed to initialize the K alman filter. Since the

optimal observer equatIons (3.35) and (3.52) are also recursive, this same

Information Is needed to Initialize the observer. We shall therefore assume

that the a prior i statistics and M0 are available to the observer system .

Initialization of the observer proceeds as follows . Let = T1~1 be

the observer initial condition , where is the “expected value” of the state

vector 
~~~~ 

Since = 
~l - T1x1, then

(3.57)

But -j ~ = A0(x~-~~ ) + hence (3.57) becomes

C1C1
1Z T 1( A M A ’+Q0)T 1’ (3.58)

To initIalize the observer, define the covariance matrix to be

z A~ M~,A~~’ + Q0 (3.59)
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and tak , the optimal gain matr ix K~~ to be

a (3.60)

3 , 5 SPI~CIAL CASE: CROSS CORR ELATED PLANT AND MEASUREMENT
NOISES

In the Interest of simplicity we have assumed that the original model of

the Gaussian white noise sequences is one In which the cross-covariance

matrix of and Is zero. We shall now treat this Important special case in

which the cross-covartance matrix of w1 and is non-zero and we shall show

that the observer design technique described In the previous sections of this

chapter is directly applicable to this special case with only minor modifications

~~~~~~~~~~~~~~~~ 

the theory. At this point we shall assume that the zero-mean Gaussian white

sequences 
~~ 

and are characterized by the covarlance relations:

8[w1w~’) ~ Q1ö1~

E (v~~ ’) a R
1
6

1~

S(w
~;

’) a S161~

We begin by computing the obsurvcr errur covartance matrix. From the

basic observer-error equation (3.10) we obtain the result

= l~~~~ ’F1’ +D 1~~~~’D~’ +Ti+i~~~ i ’ Ti+i ’

(3.61)
- D1~~~~’ T1~1 - TI+IW~~~

’ D1 ’

But since F1 - TI+I AIP I and D1 a Ti+I AIV I, substituting these relations

into (3.61) gives

-
- 

-
- 

— 
t

__________________________



T 

±Ti_ -

TI+I(AIPI ~~ ‘p1 ‘A1 ’ + A1V1R1V1 ‘A1’ + Q~
) T1~1 ’

.Tj~1(A
~
V1Sj +Sj ’V j ’A1 ’)T 1~1’ (3.62)

Hence, the same general form of solution is obt ained as in the previous

uncrc ,sscorre lated noIse case. Defining the matrix to be

a A1P1T~!4’P1
1A1’+A 1V1R 1V1’A1’+Q1

(3.63)
- A V S  - S ’V ’A ’i i i  I I I

and part itioning (3.63) as before we obtain th. result

_ _ _  
4l I~~2

a T1+1 
O~2l ~22 

Ti+i ’ (3.64)

It Is immediate ly obvious that the observer design developed previous ly In

this chapter applies without modifica tion from this point on. For the sake of

brevity we shall state only the final results . Taki ng the observer trans -

formation matrix Ti+i to be of the form

= [K i+i I In ] (3.65)

The optimal gain matrix I( &+I is found to be

K i+1
. -‘41(o~1

+R1+1
)-’ (3.66~

where the matrices and are obtained from the partitIoned (\ matrix

as IndIcated in (3.64). The cross-covar iance matr ix, S~. alters only the

computation of the matrix as indicated in (3.63).
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:i.o IWFECT OF cOORDINATE TRANS FORMATION ON OPTIMAL GAIN
MATRIX , K 1’

Up to this point it has been tacitly assumed that “without loss of

generality” the given system (3.1), (3.~~ was already in the desired canonical

form However, the phrase “without loss of generality” needs to be j ustified

since for many dynamical systems the desired canonical form canno t be

obtained directly by merely renumbering the state variables • We do, however,

assume that the system measurement matrix , H1, can be put Into the form

(3.40) and then the linear transformation (3.41) applied to obtain the desired

canonical equations. If thIs transformation need be used, then there will

he a modification to the optimal gain matrix , K i÷i ’, due to the linear trans-

formation (3.41). We shall now consider the effect of this linear trans-

formation upon our optimization technique and, In particula r , we shall derive

the optimal gain matrix taking into account the effect of the linear

transformation (3.41).

Assume it is necessary to apply the linear trans formation = M
~~i,

where M1 Is defined in (3.41) . Upon performing this transformation we have

the measurements

Z [i~ I 0 1~~ +v 1 (3.67)

Let the observer be defined by the system (3.6) where now we take the

observer output to be

(3.68)

CombinIng (3.67) and (3.68) together with the fact that x1 M1a1 we get the

result
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K 1 ‘n-rn H1~
’
~ H1~~

a 
.
~~1

+ — (3.69~
~~ 

0 0 ‘n-rn

Fro m (3.69) the over all estimat ion error covarlance is found to be the

following:

H 1~~
) -H 1~~~~H 1~

2
~ 

- 

R i -R 1K 1 ’

s e ’ a
-1-i

0 I - K R  4-1n-rn i i

H 1~’~ 1 -H 1~~~~H 1~
2
~

—j -  (3.70)

0 ‘n-rn

Equation (3.70) is simply the statement that the error in the coordinate

system Is M1 times the error in the coordinate system. That is,

~ 
- = M 1(~1 - 

~
) (3 .71)

Performi ng the matrix mult iplication indicated in (3.70) and taking the trace

gives the resul t

trace trace

+ trace f (H 1
(1) ’

H 1
12)) .c!i’ (H I

(1 1
H 1 2 )

’ 
(3.72)

+ (H1
0 ’ +H1

(l) H1
(2)K 1) R1 (a1o~’ + ,41) 1

Hj
(2)~

j J
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where the observer error covariancu is of the form

= K~ 2~~
1

Kj ~ +K 1~ ;
t +c~;’K~ +c ~;’ (3 .73)

Setting the gradient of (3.72) (with respect to the free gain matr ix, K 
~
) equal

to zero gives the first order necessary conditions for a minimum • Since

(3.72) is quadratic in K 1, these first order n~cessary conditions are also

sufficient conditions for a minimum • To obtain the gradient of (3.72) one

first substitutes (3.73) Into (3.72) and expands the trace 
~~~~~~

‘ as follows .

trace~~~1’ = t r j K 1( C + R1) K ) + 2 t r [ 1x 1 ’J +t r [cL~’)

+ t r  (( .) ‘( .  ) K 1c~;’K 1 ’J +2  tr (( . ) ‘( .)  
~~7K i ’)

+tr ((.)’( )ç~~lJ

+ tr (( • ) ‘( ‘ ) K 1R 1K 1 ’) + 2tr (( 
. )H 1~

1
~ R 1K 1

+tr I(Ht(1 ’)(Ht~~) Ri 
}

(3.74)

where ( • ) 
~ 

H L
(’) HL

(2).

Using the formulae given in Athans [ 6] , the gradient of (3.74) is

evaluated and set equal to zero giving the result:

(I +( . )
‘
( . ))K1 (C~1’ +R 1)

.( I+( .) ’( . ) ) r~;’ - ( . ) ’ H~
’)

~~a (3 75)
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But since the matrices + ( .) ‘( .)) and + ~1) are posItIve definite

(hence Invertible) we obtain from (3.75) the result

a (O~ l + C • )) (d~ +R 1)
1 

(3 .76)

where

• e 
(
I + (  • ) ‘( .) ) ( )‘ H 1~

1
~~~R1 (3.77)

Finally we note that for the special case where H
~

2) is identically zero, the
term [ . ] is identically zero and the optimal gain (3.76) reduces to the
result (3.52) obtained previously.

3.7 GENEaAUTY OF THE TRANSFORMATION Ti a [K 1 t l n m )

At this point one might ask if the consideratio n of a more general
observer transfor mation, T1, could result in a further reduction in mean-
square esti mation error . To be more specific, can the mean-square
estimatIon error be reduced even further by taking T1 = [K 1~’~pK 1

C2) ] instead

of using the less general transformation T1 a [K 1~’~II ]? The answer to
this questIon Is an unequivocable “no” and in this section of the thesis we

shall pres ent a proof of the claim . The proof Is straightforward.
We assume that the measurements are already In the desired

canon ical for m , that is:

yt
a [I m I O ] x t +!t (3.78)

We consider the most general possible observer transformation , T1 which Is
of the for m

- _ _ _ _ _ _  -
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F J 
~ 1

a ( K (1)
~~K

(2))~~~~+c  (3.79)

where K~ ’~ and K~
2) are (n-rn) x m and (n-rn) x (n-rn) partitions of the

rH ~~-1
matrix T1. Since the matrix Inverse is required to exist at each• i
instant “1” then we have the result

1 0
det a det [K (2) ] (3.80)(~) (2) 1

and therefore we co:sider all tra nsformations Ti = [K~’~IK~
2
~] where

and K~
2
~ are arbitrar y and 

~~~~ is full rank at each “I.” We shah now pr ove
that at each step “I” there is no loss of generalIty by taking K~

2
~ = ‘n-rn and

this is because the minimum achievable mean-square estimation error is,
In fact, independent of the elements of the partition

In the first step of the proof we treat the initialization of the observer.
Computing the mean-square estImation error at time “1=1” we obtain the
result

trace ~~e1’ a trace it 1

+t race)K l
(2) çr~ K (2)~~~ + K (2) K (1)R L ( (l) sK (2) s~

(3.81)

But the observer error covarlance is a T1L~0T1’ where ~ AQM0A ’

+ Q0, so expanding ~~~~~~~ in (3.81) into quadratic terms involvIn g the

appropriate partitions of the matrix Q~ gives the result (3.82) .
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‘1~l ~ + K 1
(I)~~2~ (2) , 

+ K

(3.82)

SubstitutIng (3.82) into (3.81) and “completing the square ” gives the
expression

trace e1e1’ = trace

+trace3[g
~

t2

~~

’
i
~

(1) +c~1(ci~1 +a1) ’][d~1 +a 1][K~~2
’K~~z

+c~1(c~ 1+R 1) ’} + - 

~~~~~~~~~~~~~~~~~ 
(3.83)

Clearly, to minimize trace ~~j~~~~
’ we take

K 1
(~) I( J

(1) +L ~~~~
1
(d

1 
+R 1)

1 
= 0 (3.84)

and the minimum atta inable mean-square error is given by the result

mm trace e1e1 
‘= trace R1 + trace - 

~~~
(
~~I + R 1) 1 c~ ‘

(3.85)

We note at this point that the optimal error (3.85) is attained independent

of the particular choice of 1< Hence, the minimum attainable mean-

square error is independent of the partition ~ and we may without loss of
generality take K 1~

2
~ = ‘n-rn

For all cases n=2, 3, . . ., 1,1+1 the solution proceeds as foilows. At
tim e “1+1” the equations of interest are the following:
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a (1 10] ~i+i +

a [K~~~ IK~~ ~ki~i ~~~~ (3.86)

Also,

= TL+I (\Ti+i ’

where

c~ ~~A1P~~,!’P1 ’A1 ’ +A 1V 1R 1V, ’A1 +Q i (3.87)

ztepeating the procedure described for “1= 1” we find the mean-square
estimation error at time “1+1” to be

trace !i+isi+i’ = trace R i+i --

+t ra ce~~[K~~~
1

K~~~ +c~l (c
~1 +a~+J’ [c41 +a 1+11

[K~~~
’K~~ +c~~ (a~ + t

~~+~~)~~~~]

’

+ - ()~ ~ + Ri+i 
)_ 1 

~21 
‘
~~ (3.88)

Clearly, to minimize trace e
~ 1ei+1’ we take

K~~~~~K~~~ ÷c
~1 (c41+it 1+1 i

’ o (3. 89)

The minimum attainable mean-square estimation error at time “i+l” is
given by the result
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mm trace a trace R1+j

+trace{~~2 
- cz~1(c4 1 +R ~+1) 

~~~ 
(3.90)

and this optimal result (3.90) is attained independent of the particular

choice of K~~1. Therefore, at each step n=2, 3, . . ., 1, 1+1,..., without loss
of generality, we may take K~~~= ‘n m •

3.8 SQUIVALENCE OF O&SERVE~ AND KAL.MAN FILTER WHENR1 = 0

Up to this point it has been a basic assumption that the measurement
noise be non- zero and, in tact , It was more strongly assumed that the

measurement noise covartance, it1, be positive definite at each instant “i. ”
This corresponds to the case where each measurement component is —

contaminated by an independent white noise disturbance. A specIal case of
particular interes t is the opposite extreme where the measurements are
completely noise-free, that is, V

1 
= Q for all “i .“ We shall next treat this

Important special case .

Rather loosely stated, in the absence of measurement noise, “m”

of the system states are known exactly and it is only necessary to estimate
the remaining “n-rn” states . In this particular situation it is clear tha t the
Kalman filter is degenerate in the sense that it reduces to an “n-rn” dimen-
slona l filter . Noting that the minimal-order observer Is of dimension “n-rn , ”
one questions whether or not in this situation (i.e., in the absense of
measurement noise) the optimal minimal-order observer is equivalent to the
Kalman filter in the sense tha t both filters provide identical mean-square
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estimation errors . We shall demonstrate tha t this property is , in fact , true.

We assume the system c~uatlons arc In the for m

A~ 1 42 ~~
i)

— _________  —‘-— + — (3 . 91)

4~ 42 ~(2) ~ (2)

= [I I0]x . (3.92)

For purposes of simplicity the plant noise covariance is assumed to be:

Q~
l) 0

Qi = (3.93)

0 Q~2)

Using the Kal man filter algorithms (see Chapter 1, equations

(1.3 ) through ( 1.6) it is easily verified that for the system defined by

(3.91), (3.92) the mean-square error for the Kalman filter is

trace 
~1+11~+1 =

trace) (42P~~ 42 ’ + Q~
2
~)

- ~~~~~~~~~~~ ( A P ~~~A~; ~~~~ )
~l 

~~~~~~~~~~ (3 94)

where the covariance 
~~l/H1 ~ partitioned in me for m

0 1 0
= [ (3.95k

I 1+1/1+1
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Next , from the observer error covarlance C C ‘
, which is—1+1—1+1

. C 
42ç~~’A~2

’+Q~’) 42.54.5~’42 ’ 
S

-4+1—4+1 = 1+1
42~~~ ’4; +Q~~

(3.9(

It is found that the optimal observer estimation error is

trace.~ ÷1e1+j ’ =

trace )(A~~!~~
’A~~ +Q~2)) - 

42~~~’A~2
’ (42~~

’ A 1
~2 ’

(3.97)

Equivalence of (3.94) and (3.97) follows directly from the result tha t in the

case of no measurement noise, 
~~~~~~~~~~~ 

= . This result is obtained by

inspection of the observer estimation error covariance e1+,ei+j ’ and the

corresponding relation for the (alman filter .
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OBSERVERS FOR DISCRETE SYSTEMS WITH
GAUSS-MARKOV NOISE INPUTh

4. 1 INTRODUCTION

In the previous chapter we have limited ourselves to estimation

problems in which the system disturbances were modeled as purely random

additive white sequences . Clearly, in many estimation problems the system

noises will be modeled more accurately as additive Gauss-Markov sequences

(time-wise correlated noise sequences) . Sequentially correlated plant noises

can, in pr inciple, be treated by introducing shaping filters driven by purely

random white sequences resulting in sequentially correlated sequences. [29]

However, in the design of the Kalman filter for systems with sequentially

correlated noise inputs it is necessary to increase the dimension of the state

vector to be estimated. This is inconvenient for real-time filtering and,

equally important , the computation of the Kalman filter gains Is very likely

to be ill-conditioned. Thus it is desirable to seek better ways to handle

sequentially correlated piant disturbances in estimation problems.

4.2 OBSERVER DESIGN FOR SYSTE MS WITh GAUSS-MARVOV PLAN T
NOISE

We shall now extend the results of the observer theory developed in

the previous chapter to the problem of estimation in the presence of time-

wise correlated plant disturbances • This problem shall be treated in a
straightforward manner , that is , the state equations of the plant will not be

augmented as must be done in the K alman filtering theory. Taking this

46
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direct approach will result in an observer of minimal dimension. To be more

precIse, the di mension of the minimal-order observer will be the same as

for the case when the plant noises are purely random Gaussian white

sequences • The order of the observer will therefore be independent of the

di mension of the linear system required to generate the Gauss-Markov

sequence • The resulting observer Is not designed to provide estimates of - -

the extra states which model the plant disturbance; only the original system

states ar e estimated. This Is highly desirable since, in practice, one usually

is only interested in estimating the original system states . We shall first

consider the problem of estimating the system state vector , x1, where the

noise ter m Is a Gauss-Markov sequence .

Again we consider the discrete system

= A~~i + B1u 1 + !i (4.1)

(4,2~

The measurement noise, v1, Is taken to be a Gaussian white sequence with

covariance

E(v~~ ’) a

However , in the present case we model the plant disturbance , w1, as the out-

put of a linear discrete system driven by a zero-mean Gaussian white

sequence . The plant disturbance , w1, is therefore a zero-mean Gauss-

Markov sequence generated as the output of the following system.

!i+l r1w1 + (4.3)

where is a Gaussian white sequence • The covariance matrix of the noise
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vector , w1~1, denoted as is propagated sequentially according to the

relation

Qt+i
an

iQtni
’+1V:lt

’ (4.4)

As was done in the previous chapter, we will design a minimal order observer

of the form

a F~~ +G~~1+D~ 1 (4.5)

where z1 is an (n-rn) -dimensional vector and

!i Ti~i +!i (4.6)

As befor e, the observer error evolves accordi ng to the recursive equation

!i+i a F1!~ + D1v1 
- Ti+1wi (4.7)

In this case, from the basic observer error equation (4.7), we obtain the

observer error covartance

!I+lf 1+1 = Ti+i (A1P 1~~~ ‘P 1 ‘A1 ’ + A1V1R1V1 
‘A1’ + Q~) T1~1

’

(4.8)

- Ti+i (AiPi~~~j ’+ c
T S Pi ’Ai ’)TL+i

S

In obtainIng (4.8) we have used the results that F1 = Ti+1AIP1 and TL+IALVi.

At this point it is noted that the error covarlance (4.8) is similar in form to

the corresponding expression obtained for the white noise problem considered

in the previous chapter (see equation (3.33) J. This suggests the possibility of

applying the same observer design technique developed in the previous

chapter to the present proble m with sequentially correlated plant noise.

However , when the plant noise is sequentially correlated, the observer error

48
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covariance (4.8) cont*ins extra terms doe to the fact that the observer error

at ti me “I” Is correlated with the plant noise at time 1”. Before proceeding

with the observer design we shal l digress momentarily to evaluate the cross

correlation needed in the solution of the observer error covarianve

(4.8).

From (4.7) we have

.51 = F 1, 1!1+~~1 
Fi,j+i D~ j -

~~ 1 
F1,~÷1T~.,~1; 

(‘.2,3,...

(4.9~

where we shall use the notation

~~i-l
F ~~fl F

~~~ It

and F1 I ~ I for all “I” . Initializing the observer as described previously

In Chapter 3, the inItial observer error becomes

Si = -T 1A0(~~-~~) - T1w~ (4.10)

Next , using the relat ionships

for all
(4.11)

for all “I ,)’,

One obtains the result

i—I 
_____

E F1,1~1 Tj+t wjWi ’ i1, 2,... (4. l2~

From the solution to (4.3) which Is 

- -- - - - - 



— —,--.--—-— ‘- .——- ‘— 
--—----

~ -.-- ‘-—— -—— —. — — ——-- -‘——-- — - -  -, — --.-,-- —‘--- — “—--,

i—i
!~= r 1~~!~+~~ ‘~i,k+l1]k i > i  (4.13)

one obtains the result

(4.14)

where the covariance Q
~ is obtained from (4.4). Substituting (4.14) Into

(4.12) gives the expression

- 
~~ 

~~~~ T~ 1 
Q~r’~ ’ (4.15)

An extremely desirable property from the standpoint of filtering and

processing of measurement data Is the recur sive nature of the filtering

equations as, for example, in the Kalman filtering technique. Although

(4.15) charactezizes the cross correlation ~~~~ It is not In the desired

recursive format . To obtain a recursive equation for £1w1’, consider

expanding (4.15) as follows

!i+j !i÷i ’ = - 

~~ 
Fj+j,j÷i Tj÷iQj 

r1+1 ,~ 

- T1+1Q~
r
~
’ (4.16)

Using the properties of the transition matrix , ~~~~ and the fact that

Fi = TI+1ALPI it may be shown that (4.16) is of the for m

~1+1 ~1+l’ 
= TL+i(AiPi ~~~~~~~~~~~~~ 

- Q1~ 
r~’

where (4.17)

T ’ - T ” r—l~~l 
— l’~o o

.
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Returning to the problem of designing an optimal observer for the

system (4 .1), (4.2), we again assume witlx)ut loss of generality that the

measurements are of the form

a [1 10 ]~~~ + (4. 18)

Thus, the same observer structure used previously in Chapter 3 will be

employed here. The observer output Is therefore taken to be following

!j — 
~~l h mn_m 33t +!l (4.19)

where again we seek the optimal gain matrix, Kt ,  to minimize the overall

mean square estimation error . Following closely the approach of Chapter 3,

we begin by partitioning the observer error covariance (4.8) as follows.

n
‘11 ‘12

£ £ ~~~~~~~~~~ _____________  •1’ ‘ IA

~~~ —i+1 — £ £

~22

where the partitions of the matrix are confor mable with the partitioned

matrix Ti+l. In the present case, the matrix is defined by (4.21) below.

~~~ A1P~!~~ ’ Pi ’Aj ’ +AjViaiVi ’Aj ’+Qi

- A1P 1~~,~~ ’ - w1c1’ P 1 ’A1’ (4.21)

The next step in the observer design is to obtain the overa ll

estimation error • From this point on the results are essentially identical

in form to the white noise case considered in Chapter 3. OmItti ng the

unnecessary details, we obtain the result

_  - _ _ _



-y

trace a trace

(4.22)
+ trace (x 

~~l
(O11

t+R 1+1) ~ ‘+ K 1+1 ~12 + ~~~t K 
~~ 

+ 
~22~

Comparison of (4.22) with (3.47) of the previous chapter leads to the
obvious conclusion that the Optimal gain matrix is Identical in form to that
obtained for the white noise case. Hence, the optimal gain matrix Is given
by the expression

K~+I a _c~1
i(ç~11

i +R j÷j) ’ (4.23)

where in the case of a Gauss-Markov plant noise the computation of the
matrix Is modified to account for the cross correlation between the

observer error C~~, and the plant noise, Wj

4 3  OBSERVER DESIGN FOR SYSTEMS WITH GAUSS-MARKOVMEASUREMENT NOISE

Next we shall consider the problem of sequential estimation of the
state vector of the plant (4.1), (4.2) using a minimal-order observer where
the measurements are corrupted by a colored noise of me Gauss-Mar kov
type. The plant noise, w~, Is taken to be a Gaussian white sequence with
covariance

E [w 1w~’1 = Q1o1~ (4.24)

However , here we model the measurement noise, v1 as a Gauss-Markov
sequence generated as the output of the dtscrete system

= 9~~ +~~ (4.25)
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is a zero-mean Gaussian white sequence. The covartance matrix of the

measurement noise, 
~~~ 

denoted as Rl+l, evolves with time according to
the relatIon

= 81R181
’ 

~~~~~~~~~ (4.26)

We shall next optimize our canonical observer design based upon the system

model described above. From the basic observer error equation (4.7) and

the fact that F1 = TL+IAIP1 and = TL+IA1VI it is easily shown that the

observer error covartance is of the for m

= T1+1(A1p1
t
~~

l P1’A1’ + A1V1R1V~’A1’ +Q1) Tt+j ’

+ TI+i(AIPL ~~~~~~ V1 ‘A1’ + A1V1 !~~1’p 1 ‘A1’) Ti+i ’ (4.27)

NotIng that the observer error covartance (4.27) is essentially In the same

form as (4.8), it Is clear that the canonical observer structure used

previous ly may be again utilized for the problem of colored measurement

noise. Before proceeding with the observer design it wIll be necessary to

obtain a recursive solution to the cross-covariance £~~~~‘ needed in the

evaluation of the observer error covariance (4.27). From the basic observer

error equation (4.7) and the properties of the noises w~ and v1 [namely (4.24)

and (4.25) ) one obtains the result

~~ F11~~.1D
J

’ 1=2,3,... (4.28)

Since the observer is Initialized as In (4.10) we have that

= 0  (4.29)
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From the solution of (4.25) whIch Is

2 + 8i k+l ~i ‘ > J (4.30)

where 
~ 

e ri 8k and I for all “I” we obtain the result
kaj

i~:~’ 
= 8j,J * RJ

O~,J (4.31)

and the covartance is obtained from (4.26). Substituting (4.31) into (4. ~8)
gives the result

= ~~~~~~ D
~
a

~
e1+1 3’+D1a1e1’ (4.33)

Next using the proper ties of the transition matrix Fi, ~ 
and the relationships

F1 = TI+IA1PI and D1 = TI+1ALVI it may be shown that (4.33) is equivalent to

L 

the recursive expression

= TL+i(Af I ~~~~~~
‘ + A1V1R1) 9~’

where (4.34)

:~;~r z 0

Without loss of generality we shall again assume the measurements to be of
the form (4. 18) and take the observer transformation to be of the form (4.19) .

— As before, the observer design is optimized by obtaining the free gain

matrix K j÷j which provIdes minimum overall mean square estimation error.

The matrix defined below, is partitioned as described previously
(see (4.20) ].
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A1~!~ ’ P1
1A1’ +A1VIRIVi ’AI ’ +Q~

(4.35)

+ Af 1 i~~’ V1’A1’ +A 1V1~~!’P,’A1’

where 4fl~i+1’ 
z Ti+i 

Q~
Using (3.38), (3.44) the total estimation error covariance is found

to b e

R ‘~~~~ K ‘1+1 ~i+i!t+i “i+i i÷i

S _______________________________
!i+i.2j+i =

£ C ‘
-1+1-1+1

- !j+1Y4+i’ K
K ~~~~~~

- K 
~~

+ K i+1Rj+1K 1+1’

(4.36)

Before proceeding with the minimization of the mean square

estimation error we shall rewrite the quantity f4+l~ +1’ in a more useful

form • We partition (4.34) into the following for m

_______ 

n
~_i~i~i~

j  
(4.37)

“22

where ~1l
i Is the upper mx m dimensional partition and is the lower

(n-m)xm dimensional partition . With this definition it can be shown that the

mean square estimation error is given by
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trace ei+1~~÷i’ - trace

+ trace tK i+j ~~~~~~~~~~~~~~~~~~~~~ +a1+1) K i+1 (4.38)

+ K j+i (012
i_ n22

15) +(c~1
1_ n221)K i+1’ + (~~i

Setting the gradient of (4.38) with respect to the gain matrix K i+i equal to

zero gives the result

K i+1(~11
1-

~ 11
1-

~ 11
t ’ +R j + 1)+ (~~1

t
~~ 22i) = 0  (4.39)

The minimizing solution is given by the following expression [1, 12, 24)

= _ ( c~1
t_
~221)(o11

t _
~11

t _
~11

t ’ +R j+l)+ ( 4 40)

where ( )
+ is the Moore-Penrose pseudoinverse.
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SECTION V

EXA MPLES 1LL~~TRATING ThE ThEORY

5.1 INTRODUCTION

in this chapter we shall illustrate the application and utility of the

obeic ver design techniques developed In the preceeding chapters 3 and 4 at

the dissertation . Toward this end we shall consider an i mportant practical

problem, namely the design of a radar tracking system (sometimes

referred to as a track-while-scan radar system) based upon the previously

developed theory of optimal minimal-order observers. In particular we

treat two special cases and these are presented in the following sections of

this chapter as examples 1 and 2. The purpose of these examples is to

demonstrate in a clear and straightforward manner the usefulness of optimal

minimal -order observer theory to an actual and realistic design problem. In

the interest of simplicity we have selected target models for our examples

which are sufficiently simple so that the resulting observer design equations

are not too unwieldy and cumbersome. However , the target models will be

sophisticated enough so that the results of this design study are realistic and

provide useful design infor mation in a real tracking situation.

In the first example we consider tracking targets having white noise

acceleration Inputs, that is, the target maneuver is a white noise sequence.

The maneuver , therefore , at one sampling period is completely uncorrelated

with the maneuver at a different sampling period. This situation prevails

when the target exhibits constant velocity except for random disturbances.

Also, the measurement errors are assumed to be independent from measure-

ment to measurement Typically ballistic missiles, orbital and suborbital

L ~



targets are modeled in this way. Example 1 is intended to demonstrate the

basic optimal minimal-order observer design for systems having white noise

distrubances as treated -In Chapter 3.

in the sequel we shall, of course, compare the resulting performance

of the best minimal-order observer tracking system with the performance

obtained from the corresponding theoretically optimal K alman filter tracking

system. Also, In our comparative study we shall investigate the constant

elgenvalue observer designs of Dellon [to ) and Williams (32) anti we shall

compare the performance of these designs with the best minimal-order

observer design . - -

In the second example we treat a slightly more sophisticated (and 
-
~

perhaps more realistic) target model, namely the case where target

acceleration is characterized as a time-wise correlated noise sequence .

Physically speaking, this is interpreted as the situation where if the target

L 

being tracked is accelerating (maneuver1n~ at time instant ‘I” then it is

also likely to be accelerating (maneuvering) at the next observation time

instant “1+1.” TypIcally, manned maneuvering targets such as aircraft ,

ships and submarines are generally modeled in this way [27). The

maneuver pr operties of a particular target are characterized, therefore, by

two parameters , and these parameters are the target maneuver variance and

correlation time or time constant. In the second example we shall treat the

maneuver var iance as constant and shall vary the maneuver correlation time

In parametric fashion . Hence the resulting t rac ldng accuracy of the best

minimal-order observer tracker and the K alman tracker is, for the most

part, preunted graphically. In this way a Large class of manned

maneuvering targets is considered and the performance of the tracking syatem
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for any single particular target is obtained from the graphs by specifying its

particular maneuver properties . The purpose of example 2 is to demonstrate

the application of our optimal minimal-order observer design technique for

the case of systems with time-wise correlated noise input s as discussed in

Chapter 4 of the dissertation.

5.2 EXA~~ LE 1

To illustrate the application of minimal order-observer theory

In a practical design situation we shall consider the following standard radar

tracking problem. Por purposes of simplicity we shall treat only the special

case of a single spatial dimension. In particular , the target motion Is

confined to motion along the x-axis of the usual cartesian coordinate axes and

the radar is assumed to provide range measurements along this same x-axis.

Mathematically the target equations of motion !or this simplified one -

dimensional radar tracking situation are given in state var iable representation

by the following (28 ):

2
1 T -  x1 0

= 0 1 T + 0 WI (5.1)

0 0 1 
~i 

1

-A

~i+l 
= 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ -~- - ~~~~~ -~ - - ~- —  - - 
.
-~~~~



xi

y1 = Ci 0 0) x1 +v 1 (5.2)

x1 
A

As Indicated in (5.2) , the position of the target along the x-axis is

measured by the ground radar • The measurements contain observation noise

which Is represented by an additive zero- mean Gaussian white sequence, v1,
having variance ~~2 (measurement noise variance) . Practically speaking, the

bradar 

measurement error would be range dependent. However , In this

simplified example we shall take the variance, ~~~ to be constant. In (5.1),

the input wi represents the change in target acceleration from time “1” to
ti me “i+1” and for purposes of this example w~ is assumed to be a zero-mean

Gaussian white sequence with variance am
2 (maneuver vartance). The data

rate, T, is assumed to be constant so that target position is observed every
T seconds .

One additional comment concerning the observability properties of

this system is appropriate at this time . It is clear that the system (5.1),

(5.2) (defined by the pair of matrices (A,!~)) is observable in the sense of

Kalman (16). Checking the rank of the observablllty matrix we obtain the

result

1 0 0

Det hA = Det 1 T T2/2 = T3 (5.3)

hA2 
~ ~~ 2T~

-~ — -
~
-

~~~~~~ -~a__-- —~~ — 
~~

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —b--— — *



—----- ‘ - -: ~T ’ - ~ - ~~~~p f l~ ~

Hence the system define d by (A ,~ ) is observable in the usual sense for all

data races T > 0.

K alman ’s filte r for tht~ system (5.1), (5.2) Is a 3-state filter

defined by the following equations ;

~t+l/ 1+l ~~~ + K t+i ~~~ 
- 

~j +j i~4.1111) (5.4~

where Kalman ’s gain inut rix is

P1+i,i H~~1’ 
~~i~ i ~1+i, H (+l ’ + Rt+i) ’ (5.5~

and

~~~~~~ 
A~ X1,1 (5.6)

The n-vector is the minimum mean square estimate of x1~ 1 given

mt~asurem ents up-to and includ ing time “i+l” (i.e., the fi ltered estimate)

and Is the min imum mean square estimate of 
~~~ 

given measure-

ments up-ct) and including time “I” (i.e., the one-step~ahead prediction) .

Thy n x n matrices P1~ 1~1~1 and Pj+i,i are the covarianco matrices of the

filter ed and one-step-ahead prediction errors , respectively . These matrices

siazisfy the following recursive equations .

P 1~1,1. Ai P111 Ai +Q1
(5. 7)

a (!~ 
- K i+i Hj+i) Pi~’~1

Design of Kalman ’s optimal linear filter is essentially complete at this point .

The structure of the filter La given In equations (5.4) through (5.6) and

Initialization of the filter is performed in a~cordance with (5.7).
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Finally, following the approach taken by Singer and Monztngo (28 3,

we shall initialize the K alman filter equations by taking as the Initial state

estimate

~~~~
=4  (.

~ 
y0 -2 y 1 +.~ y 2) (5.8)

~~ (y0 
- 2y 1 +y .~)

where y 2, y 1 and y0 are, respectively, the first , second and third radar

measurements received. The corresponding covariance initialization

equation for (5.8) is given by the following:

2 2
2 I 3~~ v a 

f~ 2 ~~2 T2a 2 ~~ 2 a2 T3 v 13 V m v mp
0/0= 

~~~T ~o (5.9)

~
2 ~ ~~~ o 2T 

I ~ , 2 ~~~2

~~~~~

Since K alman ’s linear filter provides the best attainable

per for mance in terms of minimizing the mean-square estimation error , U

will provide us with a usefu l upper bound to tracking fi lter performance.

Hence, our purpose in presenting the K alman filter here La to provide a

reference against whrch the performance of our minimal-order observer may

be compared . We shall next present the design equations for the

minimal-order observer .
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Design of the optimal minimal-order ohaerver for the system
described by (A, h) is relatively straightforward and involves evaluating the
design equations derived in Chapter 3. We note at thi s polat that the state
equations for the system considered in this example are already in the
desired observer canonical form (that Is, transformation of the state equations

to a new coord inate system La unnecessary, and therefore the basic design

equations of Chapter 3 apply without modification . For convenience we
tabu late the appropriate design equations below .

lK i I l n_ m ) (5.10)

[ o ]  , V1 a [s;] (5.11)

K i+l a 
~~l~~1l 

+ Rj+i) ’ (5.12)

* 42 ÷~~1~1 42 (5.L3~

= - 

42K1 +K i+j(A~i 
- A12 K~) (5 .14)

We shall present next the solution to the minimal-order
observer equations given above . Since the system defined by (A,~9 has na3

state variables and mal output measurement, the dimension of the minimal-
order observ er is n-ma 2 and therefore the observer transformation , T1,
satisfies the relationship

where



~~~~ : 

‘ 0 1
T a l  I (5.15)

~ I (2) I
lki 0 1
- -~~~-

12

Hence, T1 Is a 2 x 3 rectangular matrix containing the arbitrary gain
elements k~

1
~ and k~~~. These arbitrary gain elements are adjusted in an

adaptive manner to minimize the overall mean-square estimation error at
each time Instant “1.” Computation of the corresponding P1 and V1 matrices

— 
results in the following

0 0 1

P
1 

a 

— 

0 , V1 = -k~’~ (5.l~
0 1

The estimate of the state vector ~ is, of course, given by the following

= P
1 !j + V~ Li (5.17)

with P1 and V~ as defined in (5.16). Next, the observer transition matrix,
F1, is found to be for this example

r T2
11 Ti Iki$’) l [T

F a l  I + I I (5.18)I ,I I~ (2)~• 1 0 Li Vl+1 J
-- ~~~1~~~~~~~~ _ _

I

~‘22 K~~1 A12
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- S -

0 1 T k~~I r t i (’) f
D1 J L ~ 

k (2)f[k
(2)] 

(s

i] - [T i_I 
k~~

--~~~~~ -.- — --~~~~~ ~~~--~~~~~ —.- -

A
2

~~ A2~ K 1 A1 A1~ K 1

(5.19)

Since the three defining matrices (Ti. Fi, D1) have been specified uniquely in
terms of the unknown adaptive gain elements and ki~~ (see equations
(5.15), (5.18) and (5.19)), design of the basic observer structure Ls

essentially complete. It remains only to specify the computat4on if the
optimal gain matrix K 1 (that is, the optimal gain elements k~

1 
-t’~ 

(2))

and to describe the observer initialization technique .
Determination of the optimal observer gain matrix, K i+j , is a

recursive procec~ire which uses the covariance matrix

(\a A1P1 ~~~ 
‘Pi ’Ai ’ + A1V1R1V1 ‘A1’ + Q1. For the system defined by

the state equations (5.1) , (5.2) the matr ix fl1 is found to be

T T2/2 fT 1 0

1 T

0 1 LT
212 T 1

A1P~ PL ’Ai ’ (5.20)

k~
2
~T

2
- 

i
2 r k~~ r

2
+ ~k~~

).k
i
(2)T av ~~ - , ~~ k~

2
~T, •k~2)J

-k~~ 
I

I ‘5— -j
A~V1 Ri V1’A1’
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I
0 0 0

+ 0 0 0 (5.20)
2 Cont.0 0 am

_ _

The gain matrix K is obtained from the relation K

= -
~: 

(O~~~ +R j +j) ’ where and U11
t are the appropriate partitions of

t the covariance and Rj +j is the measurement noise covariance at time “1+1.”
Let the observer error covarianco be the foliowing

~11 ~l2
1 1 (5.21~

~12 £22

and partition the matrix in (5.9) In the form

I ,  I IU)11 U)12 U)13

ê (5.22)

~l3 °~23 ~3

Finally, the optimal gain elements, k~.J’) and k1J2) , can be written In
closed form as follows I -

(1) _ ~I2 
523( .

11 v



- ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -  —•- .-~,‘--—- ~. - , — -. -- - “ W  ~ W’ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-~~-—-—SS•S,~-•--5—- -

—~~~~~-—--—- -~ ~••— — —-- -~~--5-- - — - 5- - - - -—

U)13ki+1 a - 
~ (5.24k

~lI ~~~

where

I
1 2 i ~ 

T 22
‘li aT  +T t12 +

+ - Tk1~~ -

i 3~~ C
12 T3

~2~
2 + 2

(5.25k

- av
2 
(~

. - Tk~
(’

~ - 
T2k~

2
~ 
)(k’~1’ + Tk~2))

2 1

- a 2(i - Tk1~~ - 
Tk1

Initialization of the observer requires the evaluation of the covariance

matrix ~ A0M0A0
’ + Q0 where for this example, since M0 = P0,,0, we

obtain the result:

-~~~~~ -~~ - ~~~~~~~~~~~~~~~~~~~~ 
_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•~



- .~~~-~~~- - 5-”~~rr- ~ wS !~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ,_ ,5- _~ •w 5- W”!~5- S 
~~~~~~~~~~~~~~~~ ~~~~~~~

2 T4a 2 2la~
2 

~T
3
~m

2 100y
2 3T2O~

2

8 T2

2la~
2 7’F3am

2 49~, 2 25T2am
2 120 2 llTa 2

T + T lb T3 + _ T_

100,,,
2 3T

~
0m
2 l20v

2 l ITam
2 &, 2 

9°m
2

T2 ~ T3 8

(5.2~)
FInally, the optimal initializing gain elements, k1~~ and ~~~~ are found to

be:

210 2 
~
T30m

2

T
k 1 ~= — 

2.r4 (5.27)
2 ~~ 2

v + 2~~ 
+

b a  2 3T2a 2v~~~
T2

= 

2 0m~~’ 2190v +— ~-.—+a

5.3 PERFORMANCE EVALUATION, EXAMPLE I

We shall present next the results of a comparative study of several

tracking system designs for tracking targets as modeled In example 1. Among

those tracking fi lters evaluated are included the Kalman fi lter , the optimal

minimal-order observer , the optimal steady-state minimal order observer,

and the constant elgenvalue observer designs of Dellon [10] and WIlliams [32].

A comparison of the tracking accuracy for these several tracking systems
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is presented graphically in figures 5.1 through 5.7. Before discussing these
computer results, the following descriptive comments are necessary:

- 1. The optimal steady-state minimal-order observer Is Identical in
structure to the optimal (time-varying) minimal-order observer design

developed in this dissertation, with the exception that the observer gala

matrix is constant and equal to the steady’sca e gata matrix, Urn

obtained from the minimal- order observer algorithms.

2. Dellon’s constant elgenvalue observer design is also identical in

structure to the optimal minimal-order observer .* However, in this design

the observer gain matrix is chosen to yield a fixed time-Invariant observer

- with two constant and equal eigenvalues , Hence, to design a Dellon-type

observer for this example it is necessary to determine the observer gain
- matrix, K , such that the observer F matrix, where F = A22 + K A12, has the

characteristic equation P~ 4 = ~~ and is the desired observer etgen-

value . This observer Is therefore completely specified by its etgenvalue, ~~.

The solution is easily shown to be the following.
- 

1 T k~
’
~ CT T2/2]

F= + (5.28)
- 

0 I k~
2
~

- 

A22 K A12
- 

with

Dellon’s work is discussed In SectIon 2.1, Chapter 2.
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(I) ~~
2 +2~~~~~3

k a

and

(2) 2A0 - A 2 - 1

T

3. Williams ’ constant eigenvalue observer design is identical In

structure to a Kalman filter except instead of implementing Kalman ’s

gain matrix the observer gain matrix Is chosen to yield an observer with

three constant and equal eigenvalues . To design a Williams-type observer

for this example It is necessary to determine the triple of matrices (F, F, D)

satisfying the fu ndamental observer equatIon TA = FT + DHA such that the

observer F matrix has the characteristic equation P(A) = (A- 1L~
)
~ and is

the desired observer elgenvalue. Hence, the Williams ’ observer is also

completely specIfIed by its eigenvalue, ~~ For the system (A, H) of

example I the solution is found to be the following.

3A0 1 0

3A 2 0 1

0 0

(5.29)

D =  3)~2 3

‘W&llIams ’ work is discussed In Section 2.2 , Chapter 2.
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1 T ~~~~~~~

T2Ta -2 -T -y (5.29)
Coat .

1 0 0

Having described each of the observer designs considered in thi s

comparative study we are now ready to discuss the computer results
presented graphically in FIgures 5.1 through 5.7. In this study, the following

typical radar and target model parameters were used:

1. Radar range measurement accuracy, ~~ = 10 (ft.)

2. Target maneuver variance, = .100 (ft./sec .2)2

3. Data Rate , T = I second

Presented In Figures 5.1 and 5.2 is the total mean-square estimation

error versus the discrete time Index “I” (that is, the trace
(
~ & ‘} versus time “I”) . FIgure 5, 1 demonstrates the results

Dellon’s design for observing eigenvalues of A= .3, .4, .45 and .5 and also
demonstrates the results of the Kalman filter , the optimal observer and
the optImal steady-state observer. With reference to Figure 5.1, it is clear
that the overall steady-state estimation error of the optimal observer is
increased from that of the Kalman filter by approximately 5.9% whereas for
the best possible equal etgenvalue design (A.,~ .45) the corresponding

e1~or the sake of brevity we shall refer to the “optimal minimal-order
observer ” as the “optimal observer .”
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degredatlon is on the order of 16.5%. Therefor e It is concluded that the

steady-state performance of the optimal observer is superior , by tar, to the

~*st equal eigenvalue observer design . Inspection of the transient behavior

also shows this same general trend to be true, as seen In Figure 5.1.

(Note also, in this example, that the optimal steady-state observer provides

excellent tracking performance, not only in the steady-state but during the

transient period as well).

Another interesting comment can be made concerning the results of

Figure 5.1. In viewing the results of Figure 5.1 it is seen that the best

steady state performance Is achieved with = .45 however during the

transient period the design with A0 = .4 performs best indicating that to obtain

acceptable tracking performance (during both the transient period and in the

steady-state) based on selection of observer eigenvalues it is perhaps

necessary to select the elgenvalue (a an adaptive manner . This idea was first

proposed by Bona ( 7 3 where it was suggested that the response time could be

decreased by using one eigenvalue dur ing the transient period and after a

given time the eigenvalue could be increased to improve steady-state estima-

tion accuracy.
— Similar comments can be made about the performance of the

Williams’ 3 state observer design as seen from Figure 5.2. To achieve the

best steady-state tracking perfor mance in this case, one takes the observer

eigenvalue to be a .35. However, it Is seen in Figure 5 .2 that = .3

provides much better tracking accuracy during the transient period. In

reçards to steady-state tracking performance it is seen that for the best

elgenvalue (A.,~ — .35) the overall mean-square error is increased by

approximately 10.7% from that of the Kalman filter .
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1~igures 5.3 through 5.7 provIde a breakdown of the overall mean-

square estimation error Into target position, velocity and acceleration errors.

Figure 5.3 shows the mean-square error In the position estimate versus

discrete time “I ” for each of the observer designs being evaluated . Since

Williams’ observer is a 3-state filter , it provides some improvement in the

estimate of target position whereas the minimal-order observer designs

(includi ng the optimal observer , the optimal steady-state observer and

Dellon’s equal eigenvalue observer) do not improve the accuracy in target

position. This is no great loss however , since even the Kalman filter only

improves the accuracy in target position from its initial value of 10 feet

r .m.s .  to approximately 9 feet r .m.s. in the steady state. From the stand-

point of good tracking syste m design this slight improvement in position

accuracy is hardly worth the effort . Reduction in the size of the tracking

filter from 3 states to 2 states will result in significantl y reduced com puter

processing requirements while yielding only a slight loss in position

accuracy .

Figures 5.4 and 5.5 present the corresponding mean-square error in

the estimate of target velocity . From these curves one obtains the relative

dcgredation in the velocity estimate (ft ./sec.) from that of the Kalman filter

to be, in the steady-state, 3.3% for the optimal observer , 6.2% for the

Williams observer with = .35 and 11.2% for the Dellon observer with

= .45, Similar comments can be made concerning the mean-square

errors in the estimate of target acceleration shown in Figures 5.6 and .7.

_ 
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5.4 EXAMPLE 2

We shall next consider the important problem of radar tracking of
manned maneuvering targets as recently studied by Singer [27]. In this
example the target acceleration is modeled appropriately as a time-wise

correlated noise sequence of the Gauss-Markov type. The fundamental state

equations describing the system in one dimension are again given by (5.1),

(5.2) . All the basic definitions and assumptions of example 1 are therefore
assumed to hold with the exception that in example 2 the state driving noise,
w 1, is taken to be a scalar Gauss-Markov sequence . Hence, W i is obtained

as the output of the discrete-time linear system

(5.30)

where r Is a zero-mean scalar white sequence with variance oM
2(1~ P2) and

p Is the correlation between successive maneuver samples . Since W
1 

in (5.30)

is a non-white sequence, the Kalman filter equations cannot be directly
applied and it is necessary to “whiten” the input noise before the K alman

equations can be used. The usual solution to the “whitening” approach is to

augment the state equations (5.1), (5.2) using the relatlon (5.30).

When this is done we obtain the following “augmented” state equations .

- - 2 -

I T 0 x1 0

0 1 T 0 0
= + (5.31)

~i+i 0 0 1 1 
~ i 0

WLJ.j 0 0 0 P w1 I
____________________ -

(a) 
- (aj~~(a) (a)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— —---555- ~~~~~~~~~~5-5- 55-- , -5-- -——-- - - — — 55--.. -- - — —-~~~ 5-5- 5- —

- XL

y1 = [1 0 0 I 0] .. +v 1 (5.32)

W
i

It is clear that K alman’s filter for the above augmented

system is a 4-dimensional filter and to obtain the solution for Kalman’s

optimal weighting matrix it is necessary to solve recursively the augmented

K alman algorithms

4) - A (a)~(a) + ~ (a) ~ (a) - H~a) A~a) ~~~-~i+1/i+1 — 1 —1/1 1+1 1+1 1+1 - i

(a) _ (a) (a),,~ (a) (a) (a) , -lK — l’i+i,i H1~1 ‘~ i+l ~i+1,i Hj+j + Rj+j) ( 5 33)

p(a) 
~~~ p(a) 

~~~ +1+1/1 1 1/1 1
(5.34)

p(a) - K (a) H® p(R)
t+i,i+i 0n+i 1+1 i+i~ 1+1/i

The superscript “(a)” implies the augmented system as defined in (5.31),

(5.32). In the defining equations for the augmented Kalman filter the co-

variance matrIx for the augmented error vector is

p(a) e - x® ‘® - x® 
~ 5 35i+l/j +l ~ (+l/i+l —i+1~

(
~t+l/t+l ~~ ) ( . )
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Using the approach of Singer and Monzingo [28 ) we Initialize the

augmented K alman filter equations by taking as the initial state estimate

for the augmented state the foliowlng

x = v0/0 ‘0

k,0
=4  (~~y0 - 2y 1+~~y 2~

(5.36)

=? (y~ - + y~~)

‘~
fofo = 0  

-

where again y 2, y 1 and y0 are the first , second and third radar measure-

ments received. The corresponding covariance initialization matrix for the

augmented filter is

2 2
2 1  3~~~.... i 0v Iav 2 T  I 0

I I I
I I I

2 I  2 2 I ,~~2 T  2 I . )
3 0v 13 ~~ + T 2 I W~, + ~ a~ I p~T 2
~ i T 16 am I PT 2 

-T 0m
I I + a
L m
I I
I 6a T 2 l 6a I

0/0 a : •-

~
�‘- 

+ 
~ 

0m 
~~~~~ 

+ .
~ 
a~
2

I ~~PT 2 I +pa~~ I +~~~a 2
i ‘T °m I m I m

- — — i -  I 4- 
I , , 2 IpaI P i O  I m I

0 I m I
- I I +.P2~0 2 I m

(5.37)
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The two equations In (5.34) constitute the Ricatt i equations that must

be solved at each discrete tIme instant to obtain the Kalman weighting matrix,

K~~~. For this simple example the Kalman filter computations are increased

significantly due to the addition of the extra state var iable introduced by way

of the augmenting procedure . For example , Williams [32) has shown that the

number of multiplications or additions required to solve the Kalman equations

is given by the result

N = 3n3 + 2mn2 + 2m2n + 2m3 + n2 + 2mn (5.38)

where Is an n-vector and is an rn-vector, Whereas the non-augmented

system (5. 1) (5.2) originally required a total of N = 122 multiplications or

additions (since n=3, m=I), the augmented system defined in (5.31), (5.32)

L 

requires N=258 multiplications or addItions (since n=4 , m=1). Clearly the

Kalman filte r computational requirements have been significantly Increased

due to the mere addition of a single state variable.

Design of the minimal-order observer for this example uses

directly the “non-augmented” state equations (5. 1), (5.2) together with the

relation (S.30~. The design procedure is described Lu detail in Chapter 4.

Since the state equations (5,1), (5.2~ are already in the desired observer

canonical form , the basic observer structure for this example is identical

with that obtained La the previous example 1. [See equations (5.10) through

(5.14). However , computation of the observer gain matrix , 1< 1+1,
• 

- Is modified appropriately to account for the non- zero cross-correlation

ter m 
~~~~~~~~~ 

That Is , the optimal gain, 1( 1+1, Is obtained recursively

using the covarl ance matr ix.
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= A1PJ~~~~’P1 A~’ +AIV1RiVL
’AI’ +01 - A1P1~~~~ ’- ‘~~~~‘P1

1A1’

where the crosa-covarlance is computed recursively as

= TJ~ 1(AjPj ç~’ - Q~) 
r1’. We shall omit the unnecessary details since the

solution of the gain matrix K 1~’ 
Is quite similar to that obtained previously

In example 1. Using the notation of the previous example we obtain the

optimal gain elements, I4~~ and k~~1, in closed for m as follows.

I
I 

________ki+i 
- — 

1 2 (5.39)

I
fr(2) __ (U13.5- - — 2 ‘ S

~~ a,~

where

w1 =T2C1~~+T3c1 +~~-C 2~

+a
~
2 
(i - Tk1~~ 

- ~

I j  3~j~2 i(U12 = Tc11 + r £12 + -r 22
(5.41)

- a~
2 

(i - Tk1~~ - - k~~) (~ (l) + Tk~2))

~~~ = T~1 + ~~ - a~
2 

(1 - Tk~~ - ~~~

2
- 

~~l3 - 
T ~~23
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In obtaining the above results we have used the notation

~W
11
’ ~w 1~ “W

1~~

‘~W 21 ~~22 ~~23 
(5.42)

where for this example only the elements €w~~ and Cw23’ are non-zero and

propagate according to the relations

~ ‘l3 = P [k~ i1(T €W 1~ +~~~~~~
- 

~~23) + “
~~~~ 

+Tcw 2~’]

(5.43)

~~23 = p [k14-~2)(T 
~~l3 + T ~~23) + 

~~‘23 am2]

Initialization of the observer proceeds as follows . The initial observer

error covarlance matrix is of the form c~€’~~ = T1~
)QT1’ and it is easy to

show that for this example

= A0M0AQ
’ + A0(0 

- j0) ~~~~
‘ + - j0) ‘An ’ + Qo (5.44)

where M0 = E - )(~~ 
- 

~~~ ‘1 aud j~ is defined in (5.8) . Evaluating M0
yields the result

H 2 2
H 3~~ v av

~

2 2
2 2 2 2  ~~~ Ta~~

3~~v l3 ’~v T a  ~~
= T T 

? 
+ 16 2 (5.45)

+ 4
m

c Ta PTa 6av v m m v 5 2 2+ + 4_ _4 + ~ am +
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Also, the cross-covariance (x,~ - ~ )w~,’ is found to be

0 0 0

_ _ _ _  

2 2P T a
0 0 _~4

m (5.46)

m 20 0

Substituting (5.45) and (5.46) into (5.44) yields the initialization matrix c4~.
Omitting the unnecessary details, the optimal Initializing gain elements
and k 1~

2
~ are found to be

210 2 7o
(l) _ 

- T + —
~~~~~ (1+p)

k1 - 

c~~
2T4

190 2 + ~
(5.47)

io~~2 
~ 

2
v + —!j~1~L— (3 + 5p+2 p2)

k~
2
~ — -  — 

T
I - 

a 2T4
t 19a 2 + ~~ ( 1+p ) + a 2

Finally, the elements €w~~ and 
~~23 given In (5.43) are initialized as

follows:

T2 2
-~ w13’= —-~~ --~~~~~ (P2+p3)k~1)+a 2T (p2~~.~ p3)

(5.48)T2a 2 
3

- Lw23’ = m (P2 + P3) k~
(2

~ + am
2 

(~ + + 4-)
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5.5 PBi~FORMANCE EVALUATION , EXAMPLE 2

In this example we have assumed the radar range measurements are

Independent from sample to sample and the accuracy of the range data is

= 10 ft .  r .  m • s. For the target model w~ have taken the target maneuver

variance to be ~~2 
= 100 (fL/sec .2)2 and the maneuver time constant

(correlation) has been varied in parametric fashion . More specifically,

maneuver correlations of 0, .2, .4, .6 and .8 were evaluated in the study and

the tracking data rate , T, was assumed to be 1 secOnd. In each case

considered, the tracking performance of the 4-state Kalman filter and the

2-state minimal-order observer was evaluated. We shall next present the

- 
- computer results shown graphically in Figures 5.8 through 5.11.

The total mean-square estimation error versus discrete time “I” for

both the K alman filter and observer is shown in FIgure 5.8. Note in this

figure that we have plotted trace E [(x1 - ~1)(x1 - k~~) ’) versus “i” and there-

fore the Kalman filter curves do not contain the error contribution in

estimating the augmented state variable, w~. Referring to Figure 5.8 it is

seen that the total steady-state mean-square estimation error for the observer

is increased from that of the Kalman fi lter by 5.9%, 5.17%, 5.0%, 6.6% and

16.5% for target maneuver correlations of 0, .2, .4, .6 and .8 respectively.

These results Indicate that the overall tracking performance is dependent

upon c, the maneuver correlation , as is expected . From the viewpoint of

tracking system design, however, it is more meaningful to consider the

individual accuracies in target position and velocity estimates since these

two quantities are the critical design quantities . For this reason we have

shown in Figures 5.9 and 5.10, respectively , the mean square errors in

target position and velocity . From Figure 5.9 it is seen that Kalman filtering
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improves the initial measurement accuracy of 10 ft. r .m.s.  to, at best,

about 9 ft. r • m .s. In the steady state . As stated previously in cxampI~ 1,

this slight Improvement In position accuracy is hardly worth the increase In

numerical and computational complexities associated with mechanizing the

4-state K alman filter . The corresponding mean-square errors in target

velocity are shown In Figure 5.10 • From these curves it is determined that

the steady-state accuracy loss in the velocity estimate (ft./sec .) Incurred

in using the 2-state observer instead of the 4-state Kalman filter is

approximately 3.3%, 3.1%, 3.2%, 3.6% and 6.9% for maneuver correlations

of 0, .2, .4, .6 and .8, respectively. For completeness, we have also

Included, in FIgure 5.11, the corresponding mean-square error in the

estimate of target acceleration.

Table I shows the parametric behavior of the optimal observer gain
(1) (2) ,,elements, k1 and k1 , versus discrete time I f o r  each of the maneuver

correlations considered. The purpose of including Table I In this example

is to point out the time-varying nature of the optimal observer solution which,

of course, is also a fundamental property of the Kalman filter . After an

initial transient period, the error covarlance matrices settle down and remain

constant and likewise the corresponding optimal observer gain elements

remain constant . This same phenomenon occurs in K alman filtering theory

for problems where the system matrices (A, H) are time- Invariant and the

noise Inputs are stationary stochastic sequences . In examining Table 1 it

is Interesting to note that, generally speaking, the magnitude of the observer

gain increases as the correlation Increases from p = 0 to ~ = .8. Also,

from Table I it is seen that the observer settling time tends to increase as

the maneuver time constant Increases • The settling time of the observer
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is comparable, however, with that of the Kalman filter , as can be seen

in Figure. 5.8 through 5.11.
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Figure 5.8 Total Mean-Square Estimation Error vs. Time “ II”
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SUMMARY AND SUGGBST1O~~ FOR FURThER WORK

— 6.1 SUMMARY AND CONCLUSiONS

This disser tat ion has considered the problem of estimating the state

of a linear time-varying discrete system using an observer of minimum

dynamic order4 In Chapter 3 of the disser tation we consider systems for

which the plant noise and measurement noise are modeled as

Gaussian white sequences. The effects of these noise disturbances upon the

estimation error are considered as an integral part of the fundamental

development. The solution of ~lw observer design uses a special linear

transformation which transforms the given state equations into an equivalent

slate space which is extremely convenient from the standpoint of observer

des(g~. Design of the observer Is then based on a special obs erver config-

uration containing a free gain matrix, K1, which is chosen to minimize the

mean-square estimation error at time “i.” The solution obtained is optimal

at each instant 1,451 and therefore is optimal both during the transient period

and in the steady sta te. Computation of this gain matrix Is done

recursively as in the Kalman filter algorithms, however, compu tatlonally the

solution is much simpler than for the K alman filter . In the special cas e of

no measurement noise , the observer estimation errors are identical with

that of the corresponding K alman filter . The main contr ibut ion of Chapter 3

La, therefore, the development of a completely unified theory for the design

of optimal mini mal-order observers applicable to both time-varying and time-

invariant discrete systems for which the plant noise and measurement

noise are modeled as Gaussian white sequences .
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In Chapter 4 we have extended the basic optimal minimal-order

observer theory to cover that class of systems for which the noise

dis tur hmces ~~~~~ are time-wise correlated and are modeled adequately as
Gauss-Markov processes . The usual approach to this estimation problem

is to augment the state vector and desi gn the es timator (be it a Kalman filter,
obs erver , etc ..) to provide estimates of the total augmented state. In

Chapter 4 we have utilized the basic observer structure developed in Chapter 3

and have modified the observer gain matrix appropriately to obtain minimum
mean-square estimates of the plant states without an increase in the

dimension of the observer (i.e., the observer dimensiou rernain~ “n-rn”).
Along similar lines, we have also considered the special case whereby the
plant noises w~ and V1 are white sequences which are crosscorrelated at
time aI~ ,q (that Is, B {w~~ ‘J = S161~) and have modified the observer gaLn

matrix appropriately to provide optimal performance in the mean-square

sense.

To illustrate the typical application of the observer designs developed

In this dissertation we have considered, in Chapter 5, the design of a radar

tracking system. In the first example we treat the situation where the noises
and are white sequences. In this example, the performance of the

optimal minimal-order observer is compared with that of other estimators

including the Kalman filter and also several equal-eigenvalue observer

designs. It is shown that for a typical set of radar and target model para-

meters the optimal observer provides extemely good tracking performance and

is superior by far to the equal elgenvalue designs of Dellon [10] and

Williams [32]. In example 2 we treat the situation where the target

acceleration Is modeled as a time -wise correlated nois e sequence . Here the
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2-dimensional optimal observer Is compared with the corresponding 4-state

K alman filter and It is shown that the observer provides acceptable tracking

performance over a wide spectrum of target maneuver time constants • The

ezampl* of Chapter 5 clearly illustrate the practicality of the observer

design todsüques developed In the dissertation.

6.2 TOPiCS FOR FUTURE INVESTIGATION

During the course of performing this research several closely

associated unsolved problems of an extremely fundamental nature have been

uncovered and these problems might form the basis for further research. In

this dissertation we have considered only observers of minimal dynamic

order . That is, the dimension of the dynamical portion of the estimator is

“n-rn” where ‘n” is the dimension of the state vector to be estimated and “rn”
is the number of independent available outputs • Since it has been demonstrated

quite vividly that the Kalman filter is an observer of dimension “n” and since

the Kalman filter provides the best performance in terms of minimizing the

mean- square estimation error, the idea of considering non-minimal order

observers is appealing. (A non-minimal order observer has dynamic order

greater than the minimal order observer but less than the Kalman filter .)

It is conjectured that through the use of non-minimal order observers

the estimation error can be reduced even further from that attained with

the optimal minimal-order observer developed in this dissertation. However,

the improvement in estimation accuracy Is undoubtedly accomplished only at

the co’t of increased complexity. This non-minimal order observer would

have important application in the class at systems where some of the outputs

• are relatively noise-free while the remaining outputs are rather noisy and

-I-- —~~ —~~~~~--~-



must be filtered, In this proposed domain of research the literature Is

completely lacking and therefore at is recomme nded that further work be dune
along these lines.

Another area of research which appears to be relatively void of

investigation Is in the area of super low-order observers . When an estimate
of some fixed linear combination of states Is requir ed, It Is weil known [21]
that such an estimate can be obtained using an observer of order less than
the minimal order, “n-rn.” A consideration of the effects of system noise
inputs upon the performance of these so called super low-order observers
may lead to an optimal design similar to the optimal minimal-order observer
developed In this dissertation .

Another possible topic for future research of a more practical nature
Is the design of observers via the selection of observer eigenvalues. To
date, most of the literature pertaining to the design and optimization of
observer systems has been concerned with the abilit y to specify, with
complete freedo m, the cho ice of obs erver eigenvaiues . In fact , numerous

researchers have been able to demonstrate through the clever use of special
canonical fo rms that it is possible to design observers with completely
arb itrar y elgenvalues provided the plant equat ion s satisf y the observabtltty
criterion. However , It Is clear that without a thorough analysts of the
effects of noise the question of where to optimally place the obs erver cigen-

values for reasonable performance is still unanswered and remains a per-
plexing problem to the systems desi gner. It is one thing to be able to design
observer systems with com plete freedom In the choice of observer cigen-

values , but it is another to be able to specif y what the elgenvalues should be.
Very little has been written about this Latter aspect.
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In the design of an observer for any given fixed plant, one pos ible

approach to this elgenvalue selection problem might be to first investigate

the cigenvalues of the corresponding K alman filter In order to establish some

guidelines for selecting the observer eigenvalues. In rts lrl ctin g the class of

admissible observers to be investigated, some fundamental rules might be

developed for the optimal choice of observer eigenvalues. Results of a

— 
fundamental nature are also lacking In the domain of adaptive observer design

wherein the choice of observer elgenvalues Is modified with time in an

optimal fashion according to the noise statistics, signal to noise ratio, or

some other criterion. Much research remains to be done in the domain of

observer eigenvalue selection where the minimization of noise effects upon

system performance Is of prime importance .

Finally, it should be mentioned that the design of the optimal minimal-

order observer for time-varying continuous-time systems is still an unsolved

problem. This problem was investigated by Ash t4,5] who considered the

design of a minimal-order observer for continuous time-varying linear

systems (i.e., the continuous time analog of the discrete-time problem

treated in this dissertation) with the goal of obtaining an observer design

which minimized the effects of noise upon the estimation accuracy of the

observer derived estimates • Ash proposed a suboptimal trial-and-errortype

solution to the problem and hence the results of his work are an “engineering”
rather than a “mathematical” solution to the design problem. He was unable to

select the free gain matrix K(t) (analogous to the free gain matrix K~ of the

discrete observer) to absolutely minimize the overall-mean-square

estimation error. It is conjectured that an optimal-observer gain matrix,

K (t), does exist for the continuous time-varying minimal-order observer
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and the solution of this problem would be an important contribution to the
theory.

One possible approach to the solution of this problem might be to

discretize the continuous time-varying state equations obtaining a model for

the plant which is valid at discrete intervals ~ t seconds apart. Then the

theory developed in this dissertation for discrete-time sys tems may be

applied to the discrete representation of the plant and the optimal discrete

minimal-order observer derived. Taking the sample interval At suffic iently

small one would obtain a reasonably good approximation to the conti nuous

time problem. Of course, it is of interest to obtain a closed form solution

for the optimal observer gain K (t) analogous to the gain I(~* of the discrete

time observer . In [15] Ealman was able to obtain the continuous-time

Kaiman filter solution from a consideration of the discretized model by

taking the li mit as ~t -.0. But even Kalman himself questioned the rigor of

this approach and in (18] K alman took a more rigorous approach and solved

the Wiener-Hopf equation directly to obtain the continuous time version of

the Kalmin filter. It is recommended that further work be done in the area of

minimal-order observer design for continuous-time equations with the goal of

determining the optimal time-varying solution.
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